Climatic warming affects plant growth and physiology,yet how warming alters chemistry in invasive plants and indirectly affects herbivorous insects remains largely unknown.Here,we explored warming-induced changes in l...Climatic warming affects plant growth and physiology,yet how warming alters chemistry in invasive plants and indirectly affects herbivorous insects remains largely unknown.Here,we explored warming-induced changes in leaf chemistry of the invasive plant Alternanthera philoxeroides and its native congener Alternanthera sessilis,and further examined how these changes affected the performance of the herbivores,Cassida piperata and Spodoptera litura.We conducted a simulated warming experiment to address its effects on 13 leaf chemical traits of A.philoxeroides and A.sessilis.We measured growth and development time of two herbivores reared on plants from warming or ambient controls.Warming significantly affected leaf chemistry composition for both the invasive and native Alternanthera.Warming decreased nitrogen concentration in A.philoxeroides and increased total flavonoid and total phenol concentration in A.sessilis.The effects of warming on nutrients(i.e.fructose,sucrose,total soluble sugar and starch)varied with individual chemicals and plant species.Weight of C.piperata pupal and S.litura larval reared on warming-treated A.sessilis significantly decreased compared with non-warmed control,and a similar pattern was observed for weight of S.litura larval feeding on warming-treated A.philoxeroides.In addition,warming-treated A.sessilis significantly prolonged larval development time of S.litura.These results indicate that warming can directly affect the leaf chemistry in both invasive plant and its native congener,but these effects vary by species.Such differences in warming-induced changes in plant chemistry could indirectly affect herbivorous insects associated with the invasive and native plants.展开更多
The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also s...The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5.展开更多
基金supported by the National Key Research and Development Program(2017YFC1200104).
文摘Climatic warming affects plant growth and physiology,yet how warming alters chemistry in invasive plants and indirectly affects herbivorous insects remains largely unknown.Here,we explored warming-induced changes in leaf chemistry of the invasive plant Alternanthera philoxeroides and its native congener Alternanthera sessilis,and further examined how these changes affected the performance of the herbivores,Cassida piperata and Spodoptera litura.We conducted a simulated warming experiment to address its effects on 13 leaf chemical traits of A.philoxeroides and A.sessilis.We measured growth and development time of two herbivores reared on plants from warming or ambient controls.Warming significantly affected leaf chemistry composition for both the invasive and native Alternanthera.Warming decreased nitrogen concentration in A.philoxeroides and increased total flavonoid and total phenol concentration in A.sessilis.The effects of warming on nutrients(i.e.fructose,sucrose,total soluble sugar and starch)varied with individual chemicals and plant species.Weight of C.piperata pupal and S.litura larval reared on warming-treated A.sessilis significantly decreased compared with non-warmed control,and a similar pattern was observed for weight of S.litura larval feeding on warming-treated A.philoxeroides.In addition,warming-treated A.sessilis significantly prolonged larval development time of S.litura.These results indicate that warming can directly affect the leaf chemistry in both invasive plant and its native congener,but these effects vary by species.Such differences in warming-induced changes in plant chemistry could indirectly affect herbivorous insects associated with the invasive and native plants.
基金supported by the National Nature Science Foundation of China(No.D010504)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB05000000)
文摘The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5.