The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency ...The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.展开更多
Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas...Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas mixture in current researches of discharge characteristics of the plasma display panel (PDP). It is doubtful that whether their results match the facts. Based on the Townsend gas self-sustaining discharge condition and the chemical kinetics analysis of the Penning gas mixture discharging in PDP, the empirical equation to describe the breakdown of the Penning gas mixture is given. It is used to calculate the breakdown voltage curves of Ne-Xe/MgO and Ne-Ar/MgO in a testing macroscopic discharge cell of AC-PDP. The effective secondary electron emission coefficients (γeff) of the MgO protective layers are derived by comparing the breakdown voltage curves obtained from the empirical equation with the experimental data of breakdown voltages. In comparison with the results calculated by the Paschen law and the equation which ignore the influence of the Penning ionization on α , the results calculated by the empirical equation have better conformity with experimental data. The empirical equation characterizes the breakdown of the Penning gas mixture in PDP effectively, and gives a convenient way to study its breakdown characteristics and the secondary electron emission behaviors.展开更多
CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspe...CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspect on diamond substrate surfaces obtained with MgO electrode was fabricated by using back-sputtering from MgO electrode. The RMS roughness of diamond substrate surfaces obtained with MgO electrode is higher than those obtained with stainless steel electrode. The secondary electron emission coefficient in Ne gas of the diamond obtained with MgO electrode was twice that obtained with the stainless steel electrode.展开更多
文摘The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.
基金Science and Technology Research Foundation of the Ministry of Education, China (No. 0205-[2002]78)
文摘Paschen law and equations, which ignore the influence of the Penning ionization on the electron ionization coefficient (α), are always used as the approximation of the breakdown voltage criterion of the Penning gas mixture in current researches of discharge characteristics of the plasma display panel (PDP). It is doubtful that whether their results match the facts. Based on the Townsend gas self-sustaining discharge condition and the chemical kinetics analysis of the Penning gas mixture discharging in PDP, the empirical equation to describe the breakdown of the Penning gas mixture is given. It is used to calculate the breakdown voltage curves of Ne-Xe/MgO and Ne-Ar/MgO in a testing macroscopic discharge cell of AC-PDP. The effective secondary electron emission coefficients (γeff) of the MgO protective layers are derived by comparing the breakdown voltage curves obtained from the empirical equation with the experimental data of breakdown voltages. In comparison with the results calculated by the Paschen law and the equation which ignore the influence of the Penning ionization on α , the results calculated by the empirical equation have better conformity with experimental data. The empirical equation characterizes the breakdown of the Penning gas mixture in PDP effectively, and gives a convenient way to study its breakdown characteristics and the secondary electron emission behaviors.
文摘CVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspect on diamond substrate surfaces obtained with MgO electrode was fabricated by using back-sputtering from MgO electrode. The RMS roughness of diamond substrate surfaces obtained with MgO electrode is higher than those obtained with stainless steel electrode. The secondary electron emission coefficient in Ne gas of the diamond obtained with MgO electrode was twice that obtained with the stainless steel electrode.