The early Precambrian khondalite series is widely distributed in theJining-Zhuozi-Fengzhen-Liangcheng area, southeastern Inner Mongolia. The khondalite series mainlyconsists of sillimanite garnet potash feldspar (or t...The early Precambrian khondalite series is widely distributed in theJining-Zhuozi-Fengzhen-Liangcheng area, southeastern Inner Mongolia. The khondalite series mainlyconsists of sillimanite garnet potash feldspar (or two-feldspar) gneiss and garnet biotiteplagioclase gneiss. These gneissic rocks have commonly experienced granulite-facies metamorphism. Inzircons separated from sillimanite garnet potash feldspar gneisses, many mineral inclusions,including Sil, Grt, Ky, Kfs, Qtz and Ap, have been identified by the Laser Raman spectroscopy.Generally, prograde metamorphic mineral inclusion assemblages such as Ky + Kfs + Qtz + Ap and Ky +Grt + Kfs + Qtz are preserved in the core of zircon, while peak granulite-facies metamorphicminerals including Sil + Grt + Kfs + Qtz and Sil + Gif + Kfs + Qtz + Ap are identified in the mantleand rim of the same zircon. However, in some zircons are only preserved the peak metamorphicminerals such as Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap from core to rim, and inothers are inherited the primary cores with minor mineral inclusions of Kfs + Qtz, with peakmetamorphic mineral inclusions around the inherited cores. These data indicate that the mineralassemblage evolution of sillimanite garnet potash feldspar gneisses in the study are did experiencea polymorphic transformation of kyanite to sillimanite. In garnet biotite plagioclase gneisses,secondary electron microscopic images reveal that most zircons display distinct zoning textures,which comprise cores and rims, each with distinctive inclusion assemblages. The inherited mineralinclusions, mainly consisting of Kfs + Pl + Qtz, Kfs + Qtz and Kfs + Qtz + Ap, are preserved in theprimary cores, while peak granulite-facies mineral asemblages, including Grt + Bt + Pl + Qtz + Ap,Grt + Bt + Pl + Qtz and Grt + Bt + Pl + Qtz + Rt, are identified on the rims. The occurrence of peakmetamorphic mineral inclusions in zircons indicates that these gneissic rocks, includingsillimanite garnet potash feldspar gneiss and garnet biotite plagioclase gneiss, have experiencedgranulite-facies metamorphism. Secondary electron microscopic images of zircons from the khondaliteseries display distinct zoning from core to rim, and are genetically related to the primary,prograde, and peak metamorphic mineral inclusion assemblages respectively. These images revealirregular zoning patterns and varying thickness of cores and rims. The abundance of inclusionscomplicates the conventional U-Pb age dating. Therefore, the SHRIMP micro-spot U-Pb method isessential for the protolith and metamorphic age dating of the khondalite series, southeastern InnerMongolia.展开更多
Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grow...Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 ℃, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 ℃, isolated nano-scale C0304 particles appeared, which promoted the growth of {111 } twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed.展开更多
文摘The early Precambrian khondalite series is widely distributed in theJining-Zhuozi-Fengzhen-Liangcheng area, southeastern Inner Mongolia. The khondalite series mainlyconsists of sillimanite garnet potash feldspar (or two-feldspar) gneiss and garnet biotiteplagioclase gneiss. These gneissic rocks have commonly experienced granulite-facies metamorphism. Inzircons separated from sillimanite garnet potash feldspar gneisses, many mineral inclusions,including Sil, Grt, Ky, Kfs, Qtz and Ap, have been identified by the Laser Raman spectroscopy.Generally, prograde metamorphic mineral inclusion assemblages such as Ky + Kfs + Qtz + Ap and Ky +Grt + Kfs + Qtz are preserved in the core of zircon, while peak granulite-facies metamorphicminerals including Sil + Grt + Kfs + Qtz and Sil + Gif + Kfs + Qtz + Ap are identified in the mantleand rim of the same zircon. However, in some zircons are only preserved the peak metamorphicminerals such as Sil + Grt + Kfs + Qtz and Sil + Grt + Kfs + Qtz + Ap from core to rim, and inothers are inherited the primary cores with minor mineral inclusions of Kfs + Qtz, with peakmetamorphic mineral inclusions around the inherited cores. These data indicate that the mineralassemblage evolution of sillimanite garnet potash feldspar gneisses in the study are did experiencea polymorphic transformation of kyanite to sillimanite. In garnet biotite plagioclase gneisses,secondary electron microscopic images reveal that most zircons display distinct zoning textures,which comprise cores and rims, each with distinctive inclusion assemblages. The inherited mineralinclusions, mainly consisting of Kfs + Pl + Qtz, Kfs + Qtz and Kfs + Qtz + Ap, are preserved in theprimary cores, while peak granulite-facies mineral asemblages, including Grt + Bt + Pl + Qtz + Ap,Grt + Bt + Pl + Qtz and Grt + Bt + Pl + Qtz + Rt, are identified on the rims. The occurrence of peakmetamorphic mineral inclusions in zircons indicates that these gneissic rocks, includingsillimanite garnet potash feldspar gneiss and garnet biotite plagioclase gneiss, have experiencedgranulite-facies metamorphism. Secondary electron microscopic images of zircons from the khondaliteseries display distinct zoning from core to rim, and are genetically related to the primary,prograde, and peak metamorphic mineral inclusion assemblages respectively. These images revealirregular zoning patterns and varying thickness of cores and rims. The abundance of inclusionscomplicates the conventional U-Pb age dating. Therefore, the SHRIMP micro-spot U-Pb method isessential for the protolith and metamorphic age dating of the khondalite series, southeastern InnerMongolia.
基金financially supported by the National Natural Science Foundation of China (Nos. 51501143, 51202185 and 51390472)the National Basic Research Program of China (No. 2015CB654903)Fundamental Research Funds for the Central Universities, China Postdoctoral Science Foundation (No. 2015M572554)
文摘Aberration-corrected scanning transmission electron microscopy was employed to investigate the microstructures and secondary phases in LaBaCo2O5.5+δ(LBCO) thin films grown on SrTiO3 (STO) substrates. The as-grown films showed an epitaxial growth on the substrates with atomically sharp interfaces and orientation relationships of [100]LBCO//[100]STO and (001)LBCO//(001)STO. Secondary phases were observed in the films, which strongly depended on the sample fabrication conditions. In the film prepared at a temperature of 900 ℃, nano-scale CoO pillars nucleated on the substrate, and grew along the [001] direction of the film. In the film grown at a temperature of 1000 ℃, isolated nano-scale C0304 particles appeared, which promoted the growth of {111 } twinning structures in the film. The orientation relationships and the interfaces between the secondary phases and the films were illustrated, and the growth mechanism of the film was discussed.