The secondary electrons spectrum in XPS can be used to determine the work function of polyaniline (PANI). It is shown that the work function of PANI depends on the protonation state and the polymerization method used.
Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electr...Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.展开更多
A Monte Carlo model considering the electron spin direction and spin asymmetry h as been developed. The energy distribution of the secondary electron polarizatio n and the primary energy dependence of the polarization...A Monte Carlo model considering the electron spin direction and spin asymmetry h as been developed. The energy distribution of the secondary electron polarizatio n and the primary energy dependence of the polarization from Fe are studied. The simulation results show that: (1) the intensity of the spin-up secondary electr ons is larger thanvthat of thevspin-down secondary electrons, suggesting the s econdary electrons are spin polarized; (2) the spin polarization of secondary el ectrons with nearly zero kinetic energy is higher than the average valance spin polarization, Pb=27% for Fe. With increasing kinetic energy, the spin polarizat ion of the secondary electrons decreases to the value of Pb, remaining constant at higher kinetic energies; (3) the spin polarization increases with an increase in the primary energy and reaches a saturation value at higher primary energy i n both the Monte Carlo simulation and experimental results.展开更多
The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at...The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission(SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed.展开更多
The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the m...The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).展开更多
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ...Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.展开更多
The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigat...The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigated in this work.To account for the particle distribution,we propose a BET theory based on multilayer O_(2)physisorption model.Furthermore,based on the phenomenological model of secondary electron(SE)emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer,we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations.The relationships among O_(2)adsorption,adsorption layer thickness,and SEY variation characteristics are then examined through a series of experiments.After 12-h exposure to O_(2),the clean samples increases12%-19%of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer.Experimental results are also compared with the results from the MC model to determine whether the model is accurate.展开更多
Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been s...Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been suggested. In this study, a track-structure Monte Carlo simulation code using the dielectric theory was developed to simulate the transport of electrons below 50 keV in gold. In this code, modifications, particularly for elastic scattering, are implemented for a more precise description of the LEE emission in secondary electron emission. This code was validated using the secondary electron yield and backscattering coefficient. To ensure dosimetry accuracy, we further verified the code for energy deposition calculations using the Monte Carlo toolkit, Geant4. The development of this code provides a basis for future studies regarding the role of AuNPs in targeted radionuclide radiotherapy.展开更多
A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper ...A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper describes briefly the si mulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artifici al structures.展开更多
Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron ...Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron emission coefficients, which were determined from recent laboratory experiments. The results estimate the wall potentials up to the physical conditions that allow stable plasma sheaths under the space-charge-limited condition. The materials often used in the laboratory, such as aluminum, silicon, boron, molybdenum, silicon dioxide, and alumina, are considered. The minimum wall potential before the onset of space-charge-limited emission is determined by the electron temperatures at which the effective secondary electron emission coefficient integrated over the velocity distributions is about 0.62. The corresponding potential is given by -eφ0 ,- 1.87kBT. The condition for space-charge-limited emission is newly found by numerically searching for all the stable sheaths. The new condition is -eφ0 - 0.95kBT, and this predicts a wall potential that is less negative than the previously found one. Calculation of the power dissipated to the wall for hydrogen plasmas shows that there is a large difference in terms of power dissipation among the considered materials in the temperature range 20-50 eV.展开更多
In order to investigate the effects of secondary electrons, which are emitted from the wall, on the performance of a thruster, a one-dimensional fluid model of the plasma sheath in double walls is applied to study the...In order to investigate the effects of secondary electrons, which are emitted from the wall, on the performance of a thruster, a one-dimensional fluid model of the plasma sheath in double walls is applied to study the characteristics of a magnetized sheath. The effects of secondary electron emission (SEE) coefficients and trapping coefficients, as well as magnetic field, on the structure of the plasma sheath are investigated. The results show that sheath potential and wall potential rise with the increment of SEE coefficient and trapping coefficient which results in a reduced sheath thickness. In addition, magnetic field strength will influence the sheath potential distributions.展开更多
We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In t...We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In this measurement, the planar grid is negatively biased to force some emitted secondary electrons to return to the sample surface and to neutralize charges accumulated on the sample during the previous beam irradiation. The surface potential of the sample is then measured by use of a metal mesh probe. The grid bias for neutralization corresponding to the zero surface potential is determined based on the linear relationship between the surface potential and the grid bias. Once the surface potential equals zero, the secondary electron spectra of polymethyl methacrylate(PMMA) are studied experimentally by measuring the -curve and then fitting it to Everhart's formula. The measurement results show that the peak energy and the full width at half maximum of the spectra are 4.26 eV and 14.06 eV, respectively.展开更多
Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and ...Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.展开更多
The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron co...The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+Si1-xGex/pSi heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.展开更多
This study investigates two secondary electron emission(SEE)models for photoelectric energy distribution curves f(E_(ph),hγ),B,E_(mean),absolute quantum efficiency(AQE),and the mean escape depth of photo-emitted elec...This study investigates two secondary electron emission(SEE)models for photoelectric energy distribution curves f(E_(ph),hγ),B,E_(mean),absolute quantum efficiency(AQE),and the mean escape depth of photo-emitted electronsλof metals.The proposed models are developed from the density of states and the theories of photo-emission in the vacuum ultraviolet and SEE,where B is the mean probability that an internal photo-emitted electron escapes into vacuum upon reaching the emission surface of the metal,and E_(mean)is the mean energy of photo-emitted electrons measured from vacuum.The formulas for f(E_(ph),hγ),B,λ,E_(mean),and AQE that were obtained were shown to be correct for the cases of Au at hγ=8.1–11.6 eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV.The photoelectric cross sections(PCS)calculated here are analyzed,and it was confirmed that the calculated PCS of the electrons in the conduction band of Au at hγ=8.1–11.6eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV are correct.展开更多
The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,...The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,and the secondary electron emission(SEE)characteristics for the VGN structure are studied.The COMSOL simulation and the scanning electron microscope(SEM)image analysis are carried out to study the secondary electron yield(SEY).The effect of aspect ratio and packing density of VGN on SEY under normal incident condition are studied.The results show that the VGN structure has a good effect on suppressing SEE.展开更多
In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the seconda...In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (At, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.展开更多
A preliminary investigation is conducted to study the characteristics of sheath damping near a dielectric wall with secondary electron emission (SEE). Making use of the linear analysis of the sheath stability, we ha...A preliminary investigation is conducted to study the characteristics of sheath damping near a dielectric wall with secondary electron emission (SEE). Making use of the linear analysis of the sheath stability, we have found two major contributions to the sheath damping, one similar to the Landau damping in uniform plasmas and another determined by local electric field and electron density of the steady-state sheath. It indicates that in a classical sheath regime the damping in the sheath region monotonically increases towards the wall and decreases with the enhancement of SEE effect. In order to verify the theoretical analysis, sheath oscillation processes induced by an initial disturbance are simulated with a time-dependent one-dimensional (1D) sheath model. Numerical results obtained are consistent with the theoretical analysis qualitatively.展开更多
Dielectric barrier discharge(DBD)has been extensively investigated in the fields of environment and energy,whereas its practical implementation is still limited due to its unsatisfactory energy efficiency.In order to ...Dielectric barrier discharge(DBD)has been extensively investigated in the fields of environment and energy,whereas its practical implementation is still limited due to its unsatisfactory energy efficiency.In order to improve the energy efficiency of DBD,a novel double dielectric barrier discharge(NDDBD)reactor with high field emission and secondary electron emission was developed and compared with traditional DDBD(TDDBD)configuration.Firstly,the discharge characteristics of the two DDBD reactors were analyzed.Compared to TDDBD,the NDDBD reactor exhibited much stronger discharge intensity,higher transferred charge,dissipated power and gas temperature due to the effective utilization of cathode field emission and secondary electron emission.Subsequently,toluene abatement performance of the two reactors was evaluated.The toluene decomposition efficiency and mineralization rate of NDDBD were much higher than that of TDDBD,which were 86.44%-100%versus 28.17%-80.48%and 17.16%-43.42%versus 7.17%-16.44%at 2.17-15.12 W and 1.24-4.90 W respectively.NDDBD also exhibited higher energy yield than TDDBD,whereas the overall energy constant k_(overall)of the two reactors were similar.Finally,plausible toluene decomposition pathway in TDDBD and NDDBD was suggested based on organic intermediates that generated from toluene degradation.The finding of this study is expected to provide reference for the design and optimization of DBD reactor for volatile organic compounds control and other applications.展开更多
Reducing the secondary electron yield(SEY)of Ag-plated aluminum alloy is important for high-power microwave components.In this work,Cu doped carbon films are prepared and the secondary electron emission characteristic...Reducing the secondary electron yield(SEY)of Ag-plated aluminum alloy is important for high-power microwave components.In this work,Cu doped carbon films are prepared and the secondary electron emission characteristics are studied systematically.The secondary electron coefficientδ_(max) of carbon films increases with the Cu contents increasing at first,and then decreases to 1.53 at a high doping ratio of 0.645.From the viewpoint of surface structure,the higher the content of Cu is,the rougher the surface is,since more cluster particles appear on the surface due to the small solid solubility of Cu in the amorphous carbon network.However,from viewpoint of the electronic structure,the reduction of the sp2 hybrid bonds will increase the SEY effect as the content of Cu increases,due to the decreasing probability of collision with free electrons.Thus,the two mechanisms would compete and coexist to affect the SEY characteristics in Cu doped carbon films.展开更多
文摘The secondary electrons spectrum in XPS can be used to determine the work function of polyaniline (PANI). It is shown that the work function of PANI depends on the protonation state and the polymerization method used.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211,11705142,and 11675278)the National Key Laboratory Foundation,China(Grant No.9140C530101150C53011)
文摘Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.
基金This work was supported by the National Natural Science Foundation of China(No.10025420,No.60306006 and No.90206009).
文摘A Monte Carlo model considering the electron spin direction and spin asymmetry h as been developed. The energy distribution of the secondary electron polarizatio n and the primary energy dependence of the polarization from Fe are studied. The simulation results show that: (1) the intensity of the spin-up secondary electr ons is larger thanvthat of thevspin-down secondary electrons, suggesting the s econdary electrons are spin polarized; (2) the spin polarization of secondary el ectrons with nearly zero kinetic energy is higher than the average valance spin polarization, Pb=27% for Fe. With increasing kinetic energy, the spin polarizat ion of the secondary electrons decreases to the value of Pb, remaining constant at higher kinetic energies; (3) the spin polarization increases with an increase in the primary energy and reaches a saturation value at higher primary energy i n both the Monte Carlo simulation and experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11475220 and 11405208)the Program of Fusion Reactor Physics and Digital Tokamak with the CAS"One-Three-Five"Strategic Planning+1 种基金the National ITER Program of China(Grant No.2015GB101003)the Higher Education Natural Science Research Project of Anhui Province,China(Grant No.2015KJ009)
文摘The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission(SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873013)。
文摘The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).
基金supported by the National Key Research and Development Plan of China(No.2021YFE0114700)National Natural Science Foundation of China(No.52377145).
文摘Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.
基金Project supported by the Fund from the National Key Laboratory of Science and Technology on Space Mircrowave,China(Grant No.6142411112205)the National Natural Science Foundation of China(Grant No.62001376)。
文摘The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigated in this work.To account for the particle distribution,we propose a BET theory based on multilayer O_(2)physisorption model.Furthermore,based on the phenomenological model of secondary electron(SE)emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer,we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations.The relationships among O_(2)adsorption,adsorption layer thickness,and SEY variation characteristics are then examined through a series of experiments.After 12-h exposure to O_(2),the clean samples increases12%-19%of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer.Experimental results are also compared with the results from the MC model to determine whether the model is accurate.
基金supported by the National Natural Science Foundation of China (Nos. 12004180, 21906083, 11975122, and 22006067)the Natural Science Foundation of Jiangsu Province (No. BK20190384)the Fundamental Research Funds for the Central Universities (Nos. NE2020006, NS2022095)。
文摘Considering the significance of low-energy electrons(LEEs;0–20 eV) in radiobiology, the sensitization potential of gold nanoparticles(AuNPs) as high-flux LEE emitters when irradiated with sub-keV electrons has been suggested. In this study, a track-structure Monte Carlo simulation code using the dielectric theory was developed to simulate the transport of electrons below 50 keV in gold. In this code, modifications, particularly for elastic scattering, are implemented for a more precise description of the LEE emission in secondary electron emission. This code was validated using the secondary electron yield and backscattering coefficient. To ensure dosimetry accuracy, we further verified the code for energy deposition calculations using the Monte Carlo toolkit, Geant4. The development of this code provides a basis for future studies regarding the role of AuNPs in targeted radionuclide radiotherapy.
基金This work wus supporeal by the National Naturul Science Foundation of China(No.10025420 and No.90206009).
文摘A new parallel Monte Carlo simulation method of secondary electron (SE) and back scattered electron images (BSE) of scanning electron microscopy (SEM) for a com plex geometric structure has been developed. This paper describes briefly the si mulation method and the modification to the conventional sampling method for the step length. Example simulation results have been obtained for several artifici al structures.
基金supported partially by the National Space Lab(No.2009-0091569)BK21+ program through the National Research Foundation(NRF)funded by the Ministry of Education of Korea
文摘Numerical solutions to floating plasma potentials for walls emitting secondary elec- trons are obtained for various surface materials. The calculations are made with plasma moment equations and the secondary electron emission coefficients, which were determined from recent laboratory experiments. The results estimate the wall potentials up to the physical conditions that allow stable plasma sheaths under the space-charge-limited condition. The materials often used in the laboratory, such as aluminum, silicon, boron, molybdenum, silicon dioxide, and alumina, are considered. The minimum wall potential before the onset of space-charge-limited emission is determined by the electron temperatures at which the effective secondary electron emission coefficient integrated over the velocity distributions is about 0.62. The corresponding potential is given by -eφ0 ,- 1.87kBT. The condition for space-charge-limited emission is newly found by numerically searching for all the stable sheaths. The new condition is -eφ0 - 0.95kBT, and this predicts a wall potential that is less negative than the previously found one. Calculation of the power dissipated to the wall for hydrogen plasmas shows that there is a large difference in terms of power dissipation among the considered materials in the temperature range 20-50 eV.
基金supported by National Natural Science Foundation of China(Nos.10975026,10875024,11005025,11275034)the Scientific Research Program of the Education Bureau of Liaoning Province,China(No.2009A047)the State Key Development for Basic Research of China(Nos.2009GB105004,2009GB106002)
文摘In order to investigate the effects of secondary electrons, which are emitted from the wall, on the performance of a thruster, a one-dimensional fluid model of the plasma sheath in double walls is applied to study the characteristics of a magnetized sheath. The effects of secondary electron emission (SEE) coefficients and trapping coefficients, as well as magnetic field, on the structure of the plasma sheath are investigated. The results show that sheath potential and wall potential rise with the increment of SEE coefficient and trapping coefficient which results in a reduced sheath thickness. In addition, magnetic field strength will influence the sheath potential distributions.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1537210 and 11375139the National Key Laboratory of Space Microwave Technology China under Grant No 9140C530101130C53013
文摘We report on a novel and convenient method of measuring secondary electron spectra for insulators in a secondary electron yield measurement system with a planar grid analyzer configuration and a metal mesh probe. In this measurement, the planar grid is negatively biased to force some emitted secondary electrons to return to the sample surface and to neutralize charges accumulated on the sample during the previous beam irradiation. The surface potential of the sample is then measured by use of a metal mesh probe. The grid bias for neutralization corresponding to the zero surface potential is determined based on the linear relationship between the surface potential and the grid bias. Once the surface potential equals zero, the secondary electron spectra of polymethyl methacrylate(PMMA) are studied experimentally by measuring the -curve and then fitting it to Everhart's formula. The measurement results show that the peak energy and the full width at half maximum of the spectra are 4.26 eV and 14.06 eV, respectively.
文摘Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge.
文摘The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+Si1-xGex/pSi heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.
基金supported by the National Natural Science Foundation of China (No.11873013)
文摘This study investigates two secondary electron emission(SEE)models for photoelectric energy distribution curves f(E_(ph),hγ),B,E_(mean),absolute quantum efficiency(AQE),and the mean escape depth of photo-emitted electronsλof metals.The proposed models are developed from the density of states and the theories of photo-emission in the vacuum ultraviolet and SEE,where B is the mean probability that an internal photo-emitted electron escapes into vacuum upon reaching the emission surface of the metal,and E_(mean)is the mean energy of photo-emitted electrons measured from vacuum.The formulas for f(E_(ph),hγ),B,λ,E_(mean),and AQE that were obtained were shown to be correct for the cases of Au at hγ=8.1–11.6 eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV.The photoelectric cross sections(PCS)calculated here are analyzed,and it was confirmed that the calculated PCS of the electrons in the conduction band of Au at hγ=8.1–11.6eV,Ni at hγ=9.2–11.6 eV,and Cu at hγ=7.7–11.6 eV are correct.
基金supported by the National Natural Science Foundation of China(Grant No.11975163)。
文摘The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,and the secondary electron emission(SEE)characteristics for the VGN structure are studied.The COMSOL simulation and the scanning electron microscope(SEM)image analysis are carried out to study the secondary electron yield(SEY).The effect of aspect ratio and packing density of VGN on SEY under normal incident condition are studied.The results show that the VGN structure has a good effect on suppressing SEE.
基金supported by the National Natural Science Foundation of China(Grant Nos.10975026,11275034,and 11175052)the Key Project of Science andTechnology of Liaoning Province,China(Grant No.2011224007)the Fundamental Research Funds for the Central Universities of Ministry of Educationof China(Grant No.3132014328)
文摘In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (At, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 50925625)the National Natural Science Foundation of China (Grant Nos. 10975026 and 10875024)the Scientific Research Foundation of the Higher Educational Institutions of Liaoning Education Bureau of China (Grant No. 2009A047)
文摘A preliminary investigation is conducted to study the characteristics of sheath damping near a dielectric wall with secondary electron emission (SEE). Making use of the linear analysis of the sheath stability, we have found two major contributions to the sheath damping, one similar to the Landau damping in uniform plasmas and another determined by local electric field and electron density of the steady-state sheath. It indicates that in a classical sheath regime the damping in the sheath region monotonically increases towards the wall and decreases with the enhancement of SEE effect. In order to verify the theoretical analysis, sheath oscillation processes induced by an initial disturbance are simulated with a time-dependent one-dimensional (1D) sheath model. Numerical results obtained are consistent with the theoretical analysis qualitatively.
基金financially supported by National Key R&D Program of China(No.2017YFC0212204)Key Research and Development Program of Shaanxi Province(No.2018ZDCXL-SF-02-04)。
文摘Dielectric barrier discharge(DBD)has been extensively investigated in the fields of environment and energy,whereas its practical implementation is still limited due to its unsatisfactory energy efficiency.In order to improve the energy efficiency of DBD,a novel double dielectric barrier discharge(NDDBD)reactor with high field emission and secondary electron emission was developed and compared with traditional DDBD(TDDBD)configuration.Firstly,the discharge characteristics of the two DDBD reactors were analyzed.Compared to TDDBD,the NDDBD reactor exhibited much stronger discharge intensity,higher transferred charge,dissipated power and gas temperature due to the effective utilization of cathode field emission and secondary electron emission.Subsequently,toluene abatement performance of the two reactors was evaluated.The toluene decomposition efficiency and mineralization rate of NDDBD were much higher than that of TDDBD,which were 86.44%-100%versus 28.17%-80.48%and 17.16%-43.42%versus 7.17%-16.44%at 2.17-15.12 W and 1.24-4.90 W respectively.NDDBD also exhibited higher energy yield than TDDBD,whereas the overall energy constant k_(overall)of the two reactors were similar.Finally,plausible toluene decomposition pathway in TDDBD and NDDBD was suggested based on organic intermediates that generated from toluene degradation.The finding of this study is expected to provide reference for the design and optimization of DBD reactor for volatile organic compounds control and other applications.
基金supported by the National Key Laboratory Foundation(Grant Nos.2018SSFNKLSMT04,614241101010117 and 6142411191110)the National 111 Project of China(Grant No.B14040)。
文摘Reducing the secondary electron yield(SEY)of Ag-plated aluminum alloy is important for high-power microwave components.In this work,Cu doped carbon films are prepared and the secondary electron emission characteristics are studied systematically.The secondary electron coefficientδ_(max) of carbon films increases with the Cu contents increasing at first,and then decreases to 1.53 at a high doping ratio of 0.645.From the viewpoint of surface structure,the higher the content of Cu is,the rougher the surface is,since more cluster particles appear on the surface due to the small solid solubility of Cu in the amorphous carbon network.However,from viewpoint of the electronic structure,the reduction of the sp2 hybrid bonds will increase the SEY effect as the content of Cu increases,due to the decreasing probability of collision with free electrons.Thus,the two mechanisms would compete and coexist to affect the SEY characteristics in Cu doped carbon films.