期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation
1
作者 封国宝 崔万照 +2 位作者 张娜 曹猛 刘纯亮 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期459-466,共8页
Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface ... Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron(SE) and movement toward surface can be simulated using this model.This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process.In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately. 展开更多
关键词 secondary electron yield synthetic semi-empirical physical model metal electron irradiation
下载PDF
Improved electrochemical hydrogen storage properties of Mg-Y thin films as a function of substrate temperature 被引量:1
2
作者 Yanyan Wang Gongbiao Xin +4 位作者 Chongyun Wang Huiyu Li Wei Li Jie Zheng Xingguo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期287-290,共4页
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f... Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films. 展开更多
关键词 Mg-Y thin films substrate temperature electrochemical hydrogen storage discharge capacity cyclic stability metal hydride/nickel secondary batteries
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部