The coronavirus disease 2019(COVID-19)pandemic has greatly damaged human society,but the origins and early transmission patterns of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)pathogen remain unclea...The coronavirus disease 2019(COVID-19)pandemic has greatly damaged human society,but the origins and early transmission patterns of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)pathogen remain unclear.Here,we reconstructed the transmission networks of SARS-CoV-2 during the first three and six months since its first report based on ancestor-offspring relationships using BANAL-52-referenced mutations.We explored the position(i.e.,root,middle,or tip)of early detected samples in the evolutionary tree of SARS-CoV-2.In total,6799 transmission chains and 1766 transmission networks were reconstructed,with chain lengths ranging from 1-9 nodes.The root node samples of the 1766 transmission networks were from 58 countries or regions and showed no common ancestor,indicating the occurrence of many independent or parallel transmissions of SARS-CoV-2 when first detected(i.e.,all samples were located at the tip position of the evolutionary tree).No root node sample was found in any sample(n=31,all from the Chinese mainland)collected in the first 15 days from 24 December 2019.Results using six-month data or RaTG13-referenced mutation data were similar.The reconstruction method was verified using a simulation approach.Our results suggest that SARS-CoV-2 may have already been spreading independently worldwide before the outbreak of COVID-19 in Wuhan,China.Thus,a comprehensive global survey of human and animal samples is essential to explore the origins of SARS-CoV-2 and its natural reservoirs and hosts.展开更多
Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic ...Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mu-tations including tRNASer(UCN) 7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr 15927G>A and tRNASer(UCN) 7444G>A are insufficient to produce a deafness phe-notype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochon-drial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deaf-ness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness.展开更多
Molecular pathogenesis of tumors arising in BRCA1/2 germ-line mutation carriers usually includes somatic inactivation of the remaining allele of the involved gene.Consequently,BRCA1/2-driven cancers are sensitive to p...Molecular pathogenesis of tumors arising in BRCA1/2 germ-line mutation carriers usually includes somatic inactivation of the remaining allele of the involved gene.Consequently,BRCA1/2-driven cancers are sensitive to platinum-based therapy and poly(ADP-ribose)polymerase inhibitors(PARPi).Long-term exposure to these drugs may result in the emergence of secondary BRCA1/2 mutations,which restore the open-reading frame of the affected allele.This platinum/PARPi crossresistance mechanism applies both for BRCA1 and BRCA2 genes and has been repeatedly validated in various laboratory models and multiple clinical studies.There are some other routes associated with the partial rescue of BRCA1/2 function or the development of BRCA1/2-independent pathways for genomic maintenance;however,their actual clinical relevance remains to be established.In addition,studies on the short-term neoadjuvant therapy for ovarian cancer revealed that even chemonaive BRCA1-driven tumors contain a small proportion of BRCA1-proficient cells.These pre-existing cells with retained BRCA1 heterozygosity rapidly repopulate the tumor mass during platinum exposure,but become outcompeted by BRCA1-deficient cells during therapy holidays.Understanding of the platinum/PARPi resistance pathways has led to the development of novel therapeutic approaches,which aim to improve the management of BRCA1/2-related cancers and are currently undergoing preclinical and clinical evaluation.展开更多
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021YFC0863400)Institute of Zoology,Chinese Academy of Sciences(E0517111,E122G611)。
文摘The coronavirus disease 2019(COVID-19)pandemic has greatly damaged human society,but the origins and early transmission patterns of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)pathogen remain unclear.Here,we reconstructed the transmission networks of SARS-CoV-2 during the first three and six months since its first report based on ancestor-offspring relationships using BANAL-52-referenced mutations.We explored the position(i.e.,root,middle,or tip)of early detected samples in the evolutionary tree of SARS-CoV-2.In total,6799 transmission chains and 1766 transmission networks were reconstructed,with chain lengths ranging from 1-9 nodes.The root node samples of the 1766 transmission networks were from 58 countries or regions and showed no common ancestor,indicating the occurrence of many independent or parallel transmissions of SARS-CoV-2 when first detected(i.e.,all samples were located at the tip position of the evolutionary tree).No root node sample was found in any sample(n=31,all from the Chinese mainland)collected in the first 15 days from 24 December 2019.Results using six-month data or RaTG13-referenced mutation data were similar.The reconstruction method was verified using a simulation approach.Our results suggest that SARS-CoV-2 may have already been spreading independently worldwide before the outbreak of COVID-19 in Wuhan,China.Thus,a comprehensive global survey of human and animal samples is essential to explore the origins of SARS-CoV-2 and its natural reservoirs and hosts.
基金supported by grants from The National Natural Science Foundation of China(81070794 and 31100903)The Natural Science Foundation of Zhejiang Province(Y2110399)The China Postdoctoral Science Foundation(2013M531472)
文摘Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mu-tations including tRNASer(UCN) 7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr 15927G>A and tRNASer(UCN) 7444G>A are insufficient to produce a deafness phe-notype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochon-drial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deaf-ness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness.
基金Supported by The Ministry of Science and Higher Education of the Russian Federation,No.075-15-2020-789.
文摘Molecular pathogenesis of tumors arising in BRCA1/2 germ-line mutation carriers usually includes somatic inactivation of the remaining allele of the involved gene.Consequently,BRCA1/2-driven cancers are sensitive to platinum-based therapy and poly(ADP-ribose)polymerase inhibitors(PARPi).Long-term exposure to these drugs may result in the emergence of secondary BRCA1/2 mutations,which restore the open-reading frame of the affected allele.This platinum/PARPi crossresistance mechanism applies both for BRCA1 and BRCA2 genes and has been repeatedly validated in various laboratory models and multiple clinical studies.There are some other routes associated with the partial rescue of BRCA1/2 function or the development of BRCA1/2-independent pathways for genomic maintenance;however,their actual clinical relevance remains to be established.In addition,studies on the short-term neoadjuvant therapy for ovarian cancer revealed that even chemonaive BRCA1-driven tumors contain a small proportion of BRCA1-proficient cells.These pre-existing cells with retained BRCA1 heterozygosity rapidly repopulate the tumor mass during platinum exposure,but become outcompeted by BRCA1-deficient cells during therapy holidays.Understanding of the platinum/PARPi resistance pathways has led to the development of novel therapeutic approaches,which aim to improve the management of BRCA1/2-related cancers and are currently undergoing preclinical and clinical evaluation.