期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
Effects of high-pressure heat treatment on the solid-state phase transformation and microstructures of Cu_(61.13)Zn_(33.94)Al_(4.93) alloys 被引量:7
1
作者 王海燕 刘建华 +1 位作者 彭桂荣 王文魁 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期469-474,共6页
The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at var... The phase transformation activation energy of the Cu61.13Zn33.94A14.93 alloys, which were treated at 4 GPa and 700 ℃ for 15 minutes, was calculated by means of differential scanning calorimetry curves obtained at various heating and cooling rates. Then, the effects of high-pressure heat treatments on the solid-state phase transformation and the microstructures of Cu61.13Zn33.94A14.93 alloys were investigated. The results show that high-pressure heat treatments can refine the grains and can change the preferred orientation from (111) to (200) of α phase. Compared with the as-cast alloy, the sample with high-pressure heat treatment has finer grains, lower β'→β and/β→β' transformation temperature and activation energy. Furthermore, we found that high cooling rate favours the formation of fine needle-like α phase in the range of 5-20℃/min. 展开更多
关键词 Cu61.13Zn33.94A14.93 alloy high-pressure heat treatment solid-state phase transformation microstructureS
下载PDF
Effect of heat treatment processing on microstructure and tensile properties of Ti-6Al-4V-10Nb alloy 被引量:5
2
作者 Hong SUN Li-ming YU +4 位作者 Yong-chang LIU Li-ye ZHANG Chen-xi LIU Hui-jun LI Jie-feng WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期59-66,共8页
Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties ... Effects of heat treatment processing on the microstructure and mechanical properties of Ti-6Al-4V-10Nb alloy were investigated. The microstructures were investigated by SEM, TEM and XRD, and the mechanical properties were evaluated by tensile tests at room and elevated temperatures. The results indicate that the lath-like and globular primary α phase, secondary α phase and β phase are obtained after forging and heat treatment processing. The size of secondary α phase is much smaller than that of primary α phase. After heat treatment, the volume fraction of primary α phase is decreased, and that of secondary α phase is increased. With the increase of solution temperature, the volume fraction of primary α phase is gradually decreased, and that of secondary α phase is obviously increased. The yield strength and tensile strength of Ti-6Al-4V-10Nb alloy are significantly enhanced with the solution temperature increasing. 展开更多
关键词 Ti-6Al-4V-10Nb alloy heat treatment microstructure primary α phase secondary α phase STRENGTH
下载PDF
Dual Phase Heat Treatment of Low-Alloy Steel 被引量:6
3
作者 HAN Jian-min CUI Shi-hai +1 位作者 LI Wei-jing MA Xiao-yan 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第5期47-51,共5页
Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi stee... Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively. 展开更多
关键词 low-alloy steel dual phase heat treatment microstructure OPTIMIZATION
下载PDF
Phase change materials as quenching media for heat treatment of 42CrMo4 steels 被引量:3
4
作者 Milad SAKKAKI Farhad SADEGH MOGHANLOU +3 位作者 Soroush PARVIZI Haniyeh BAGHBANIJAVID Aziz BABAPOOR Mehdi SHAHEDI ASL 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期752-761,共10页
In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standa... In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure. 展开更多
关键词 phase change materials heat treatment quenchant 42CrMo4 steel microstructure mechanical property
下载PDF
Influence of Microstructure and Second Phase Precipitation by Adding Al-Ti on the Mechanical Behavior of Austenitic Heat Resistant Steel Castings
5
作者 W. EI-Ghazaly A. Y. Shash S. EI-Ghazaly 《材料科学与工程(中英文B版)》 2016年第5期241-248,共8页
关键词 耐热钢铸件 NI3AL Ni3Ti 力学行为 奥氏体 金属间化合物 力学性能 过热处理
下载PDF
Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment 被引量:4
6
作者 李静媛 谢建新 +1 位作者 金军兵 王智祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1028-1034,共7页
Microstructural evolution of AZ91 magnesium alloy was investigated during homogenizing annealing treatment, hot extrusion and ageing treatment, respectively. The results exhibited that both the divorced eutectic β-Mg... Microstructural evolution of AZ91 magnesium alloy was investigated during homogenizing annealing treatment, hot extrusion and ageing treatment, respectively. The results exhibited that both the divorced eutectic β-Mg17Al12 and the precipitated β-Mg17Al12 phases appeared in the as-cast alloy. The β-Mg17Al12 phase dissolved into α-Mg matrix mostly and the structure kept fine after the optimized homogenization treatment at 380 °C for 15 h. Dynamic recrystallization and consequent grain refinement occurred during extrusion. The banded β-Mg17Al12 precipitates paralleled to the extrusion direction were observed after ageing treatment. The banded precipitation should be attributed to the solidification segregation which was elongated during the subsequent extrusion. Furthermore, the effects of temperature, holding time of homogenization and ageing treatment, and extrusion processing parameters on the microstructural evolution of AZ91 alloy were also discussed in details according to the experimental results. 展开更多
关键词 AZ91 alloy microstructural evolution Mg17Al12 phase heat treatment EXTRUSION
下载PDF
Effect of 0.3% Sc on microstructure, phase composition and hardening of Al-Ca-Si eutectic alloys 被引量:1
7
作者 Nikolay BELOV Evgenia NAUMOVA Torgom AKOPYAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期741-746,共6页
The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and h... The phase composition,microstructure and hardening of aluminum-based experimental alloys containing0.3%Sc,0?14%Si and0?10%Ca(mass fraction)were studied.The experimental study(electron microscopy,thermal analysis and hardnessmeasurements)was combined with Thermo-Calc software simulation for the optimization of the alloy composition.It wasdetermined that the maximum hardening corresponded to the annealing at300?350°С,which was due to the precipitation of Al3Scnanoparticles with their further coarsening.The alloys falling into the phase region(Al)+Al4Ca+Al2Si2Ca have demonstrated asignificant hardening effect.The ternary eutectic(Al)+Al4Ca+Al2Si2Ca had a much finer microstructure as compared to the Al?Sieutectic,which suggests a possibility of reaching higher mechanical properties as compared to commercial alloys of the A356type.Unlike commercial alloys of the A356type,the model alloy does not require quenching,as hardening particles are formed in thecourse of annealing of castings. 展开更多
关键词 Al-Ca-Si-Sc system alloy eutectic Al3Sc nanoparticles phase composition microstructure heat treatment HARDENING
下载PDF
Effect of heat treatment on the Nb distribution and corrosion resistance of Zr-Sn-Nb-Fe zirconium alloy
8
作者 LIU Wenqing GENG Xun LIU Qingdong LI Qiang ZHOU Bangxin YAO Meiyi 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期192-196,共5页
After being treated in different ways, Zr-Sn-Nb-Fe alloy specimens are exposed in 0.01mol/L LiOH aqueous solution at 350℃ under 16.8 MPa. The examination of microstructures and second phase particles (SPPs) of thes... After being treated in different ways, Zr-Sn-Nb-Fe alloy specimens are exposed in 0.01mol/L LiOH aqueous solution at 350℃ under 16.8 MPa. The examination of microstructures and second phase particles (SPPs) of these specimens was carried out by high-resolution transmission electron microscopy (HR-TEM). The specimens treated at 800℃ before the final cold rolling have a better corrosion resistance than those treated at 680℃, and the specimens treated at 500℃, after the final cold rolling, have a better corrosion resistance than those treated at 560℃. TEM examination shows that the SPPs existing in the 800℃/500℃ specimen, which has the best corrosion resistance, contains a lot of Nb element, which results in the reduction of the niobium content in the α-Zr solid solution. 展开更多
关键词 ZIRCALOY heat treatment corrosion resistance microstructure second phase particles
下载PDF
Effects of isothermal process parameters on semisolid microstructure of Mg-8%Al-1%Si alloy 被引量:4
9
作者 曹丽杰 马国睿 唐春冲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2364-2369,共6页
A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure o... A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg-8%Al-1%Si alloy were investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg2Si phase transforms from Chinese script shape to granule shape. The morphology modification mechanisium of Mg2Si phase in Mg-8%Al-1%Si alloy during the semisolid isothermal heat treatment was also studied. 展开更多
关键词 Mg-Al-Si alloy SEMI-SOLID microstructure isothermal heat treatment Mg2Si phase
下载PDF
Effects of Heat Treatment Process Parameters on Microstructure and Mechanical Properties of DP440Cold Rolled Strip 被引量:1
10
作者 Gang HUO Yi-ming CEN +2 位作者 Zhen-xing LI Guo-dong LI Chang-sheng LI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第5期509-516,共8页
In order to optimize the production process, improve the production efficiency and accelerate the development and application of the domestic dual-phase steel, the effects of heat treatment process parameters on micro... In order to optimize the production process, improve the production efficiency and accelerate the development and application of the domestic dual-phase steel, the effects of heat treatment process parameters on microstructure and mechanical properties of DP440 cold rolled strip were studied by the CAS-300 simulated continuous annealing equipment. When the heating rate increased from 5 to 100 ℃/s, both the tensile strength and yield strength increased because of the decreased grain size. When the intercritical annealing temperature increased from 780 to 850 ℃, the martensite content decreased so that the tensile strength decreased first, then increased, and the yield strength increased. When the rapid cooling rate increased from 25 to 100 ℃/s, because the martensite content increased, the tensile strength increased, while the yield strength decreased. When the overaging temperature increased from 260 to 400 ℃, the tensile strength decreased, while the yield strength increased. When the overaging time increased from 240 to 480 s, the tensile strength decreased a little, while the yield strength increased a little. 展开更多
关键词 dual-phase steel heat treatment microstructure mechanical property
原文传递
High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment
11
作者 Junyi Ma Lin Yu +2 位作者 Qing Yang Jie Liu Lei Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期132-144,共13页
Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position d... Directed energy deposition-arc(DED-Arc)technology has the advantages of simple equipment,low manufacturing cost and high deposition rate,while the use of DED-Arc has problems of microstructure inhomogeneity,position dependence of macroscopic mechanical properties and anisotropy.Therefore,it is necessary to carry out a subsequent heat treatment to improve its microstructure uniformity,mechanical properties and superelasticity.In this investigation,the DED-Arc 15-layer NiTi alloy thin-walled parts with the solution treatment at different process parameters were studied to analyze the effects of solution heat treatment on microstructure,phase composition,phase transformation,microhardness,tensile and superelasticity.The temperature range of solution treatment is 800-1050℃,and the treatment time range is 1-5.5 h.The results show that after solution treatment at 800℃/1 h,the content of precipitated phase decreases,the grain is refined,the microhardness increases,and the mechanical properties in the 0°direction are improved.The strain recovery rate after 10 tensile cycles has increased from 37.13%(as-built)to 49.25%(solid solution treatment).This research provides an effective post treatment method for high-performance DED-Arc NiTi shape memory alloys. 展开更多
关键词 Directed energy deposition-arc(DED-Arc) Cold metal transfer(CMT) NiTi shape memory alloys microstructure phase transformation Solution heat treatment
原文传递
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
12
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase heat treatment microstructure Damping properties.
下载PDF
Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy 被引量:6
13
作者 ZOU Hao PAN Qing-lin +4 位作者 Sill Yun-jia CHEN ling XIANG Hao LI Rui-shi LI Hang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1285-1294,共10页
The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning elec... The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements A1, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture. 展开更多
关键词 ultrasonic treatment grain refinement microstructure secondary phases
下载PDF
Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys 被引量:20
14
作者 Zhi-bing DING Yu-hong ZHAO +4 位作者 Ruo-peng LU Mei-ni YUAN Zhi-jun WANG Hui-jun LI Hua HOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期722-734,共13页
The effects of Zn addition on the microstructure and mechanical properties of Mg.10Gd.3Y.0.6Zr(wt.%)alloys in the as-cast,solution-treated,and peak-aged conditions were investigated.Experimental results reveal that th... The effects of Zn addition on the microstructure and mechanical properties of Mg.10Gd.3Y.0.6Zr(wt.%)alloys in the as-cast,solution-treated,and peak-aged conditions were investigated.Experimental results reveal that the microstructure of the as-cast alloy without Zn consists ofα-Mg and Mg24(Gd,Y)5 phases,and the alloy with 0.5 wt.%Zn consists ofα-Mg,(Mg,Zn)3(Gd,Y)and Mg24(Gd,Y,Zn)5 phases.With the addition of Zn increasing to 1 wt.%,the Mg24(Gd,Y,Zn)5 phase disappears and some needle-like stacking faults distribute along the grain boundaries.Moreover,the 18R long-period stacking ordered(LPSO)phase is observed in the as-cast alloy with 2 wt.%Zn.After solution treatment,the Mg24(Gd,Y)5 and Mg24(Gd,Y,Zn)5 eutectic phases are completely dissolved,and the(Mg,Zn)3(Gd,Y)phase,needle-like stacking faults and 18R LPSO phase all transform into 14H LPSO phase.Both the suitable volume fraction of 14H LPSO phases and the fine ellipsoidal-shapedβ′phases make the peak-aged alloy with 0.5 wt.%Zn exhibit excellent comprehensive mechanical properties and the UTS,YS and elongation are 338 MPa,201 MPa and 6.8%,respectively. 展开更多
关键词 Mg alloy heat treatment microstructure mechanical property LPSO phase
下载PDF
Effect of heat treatment on corrosion behaviors of Mg-6Gd-3Y-0.5Zr alloy
15
作者 Fei Wang Bin-guo Fu +3 位作者 Yu-feng Wang Tian-shun Dong Guo-lu Li Jin-hai Liu 《China Foundry》 SCIE EI CAS 2024年第5期599-612,共14页
The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show th... The microstructures and corrosion behaviors of as-cast,T4-treated,and T6-treated Mg-6Gd-3Y-0.5Zr alloys were systematically investigated by SEM,TEM,immersion test,and electrochemical corrosion test.The results show that the microstructure of the as-cast alloy is composed ofα-Mg and Mg_(24)(Gd,Y)_(5)eutectic phase,and in T4-treated alloy,Mg_(24)(Gd,Y)_(5)phase dissolves into theα-Mg matrix,leading to an increase in the(Y,Gd)H_(2)phase.After T6 treatment,nanoscale Mg_(24)(Gd,Y)_(5)phase dispersedly precipitates from theα-Mg matrix,and exhibits a specific orientation relationship with theα-Mg:(332)Mg_((24)(Gd,Y)_(5))//(1011)_(α-Mg),[136]Mg_((24)(Gd,Y)_(5))//[1210]_(α-Mg).The corrosion resistance of the Mg-6Gd-3Y-0.5Zr alloys can be ranked in the following order:T6-treated alloy exhibits the highest corrosion resistance,followed by the T4-treated alloy,and finally,the as-cast alloy.The corrosion products of the alloys are all composed of MgO,Mg(OH)_(2),Gd_(2)O_(3),Y_(2)O_(3),and MgCl_(2).The corrosion behavior of Mg-6Gd-3Y-0.5Zr alloy is closely related to the precipitated phase.By establishing the relationship between corrosion rate,hydrogen evolution rate,and corrosion potential,it is further demonstrated that during the micro galvanic corrosion process,the coarse Mg_(24)(Gd,Y)_(5)phase in the as-cast alloy undergoes extensive dissolution,and(Y,Gd)H_(2)phase promotes the dissolution of theα-Mg matrix in the T4-treated alloy,intensifying the hydrogen evolution reaction.The T6-treated alloy,with dispersive precipitation of nanoscale Mg_(24)(Gd,Y)_(5)phase,exhibits better corrosion resistance performance. 展开更多
关键词 Mg-6Gd-3Y-0.5Zr alloy heat treatment microstructure precipitated phase corrosion resistance
下载PDF
Microstructure characterization on Mg-2Nd-4Zn-1Zr alloy duringheat treatment 被引量:1
16
作者 梁敏洁 廖海洪 +2 位作者 丁文江 彭立明 付彭怀 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2327-2333,共7页
The microstructures of Mg-2Nd-4Zn-1Zr alloy in the as-cast state and after heat treatment were investigated. Several kinds of secondary phases were found and characterized by transmission electron microscopy (TEM), ... The microstructures of Mg-2Nd-4Zn-1Zr alloy in the as-cast state and after heat treatment were investigated. Several kinds of secondary phases were found and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the as-cast alloy, the existing eutectic compounds are Mg-Nd-Zn ternary phases: T phases and W phases. After the heat treatment, with increasing the temperature or time, it was found that T phase almost dissolved into the α-Mg matrix, while a large amount of W phase remained in the matrix. On the other hand, with prolonging the time, the morphology of the phase changed from continuous network to the spherical shape along the grain boundary. The density of the W phase gradually decreased and finally it was coarsened and stabilized in the treatment process. 展开更多
关键词 Mg-Nd-Zn alloy heat treatment microstructure T phase W phase
下载PDF
Microalloying Effect of Sn on Phase Transformation During Heat Treatment in Mg–Y–Zn–Zr Alloys 被引量:2
17
作者 Pei-Lin Zhang Yu-Hong Zhao +2 位作者 Ruo-Peng Lu Zhi-Bing Ding Hua Hou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第5期550-558,共9页
The microstructure and mechanical properties of the as-cast and heat-treated Mg-4.6 Y-2.5 Zn-0.6 Zr-x Sn(x = 0, 0.2 and0.5 wt%) alloys were investigated in this work. The results showed that the eutectics have been re... The microstructure and mechanical properties of the as-cast and heat-treated Mg-4.6 Y-2.5 Zn-0.6 Zr-x Sn(x = 0, 0.2 and0.5 wt%) alloys were investigated in this work. The results showed that the eutectics have been refined with 0.2% Sn addition and it has no effect on the phase category of the alloys. However, Sn3 Y5 phase was found in 0.5% Sn-added alloy.After heat treatment at 520 °C, the transformation of the long-period stacking ordered(LPSO) phase takes place in the Mg-Y-Zn-Zr alloy, but the transition is not completed in the alloys containing Sn. In addition, during the heat treatment, the mechanical properties of Sn-free alloys are significantly improved, and the strength of alloys containing Sn does not change much. Through observation and analysis of the microstructure and mechanical properties, it is found that Sn addition hinders the process of a0-Mg ? a-Mg ? 14 H and the process is the key to the transition of 18 H-LPSO to 14 H-LPSO. 展开更多
关键词 Long-period STACKING ordered(LPSO) phase microstructure heat treatment phase TRANSFORMATION
原文传递
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
18
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Microstructure of cast γ-TiAl based alloy solidified from β phase region 被引量:7
19
作者 王岩 刘咏 +2 位作者 杨广宇 李慧中 唐蓓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期215-222,共8页
The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential... The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase. 展开更多
关键词 γ-TiAl based alloy microstructure phase transformation β phase SOLIDIFICATION heat treatment
下载PDF
Cu含量和热处理工艺对Al-Si-Mg-Mn-xCu铸造铝合金显微组织和力学性能的影响 被引量:1
20
作者 贾志宏 周广文 +5 位作者 周宏宇 刘飞 丁立鹏 翁瑶瑶 向开云 赵海东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第3期737-754,共18页
采用三维X射线显微镜、光学显微镜、扫描电子显微镜、透射电子显微镜及硬度测试系统研究Cu含量及热处理工艺对真空压铸Al-Si-Mg-Mn-xCu合金显微组织和力学性能的影响。研究发现,虽然Cu含量增加会提高铸锭中气孔的密度和尺寸,但是Cu添加... 采用三维X射线显微镜、光学显微镜、扫描电子显微镜、透射电子显微镜及硬度测试系统研究Cu含量及热处理工艺对真空压铸Al-Si-Mg-Mn-xCu合金显微组织和力学性能的影响。研究发现,虽然Cu含量增加会提高铸锭中气孔的密度和尺寸,但是Cu添加将促进凝固过程中含Cu初生相(Q-Al_(5)Cu_(2)Mg_(8)Si_(6)和θ-Al_(2)Cu)的形成,从而提高合金性能。合金中形成5种不同结构的初生相,包括共晶Si、α-Al(Fe,Mn)Si、β-Mg_(2)Si、Q-Al_(5)Cu_(2)Mg_(8)Si_(6)和θ-Al_(2)Cu相。随着Cu含量增加,θ相的面积分数迅速增加,α-Al(Fe,Mn)Si相面积分数首先降低,随后缓慢增加,而Q相的变化趋势与α-Al(Fe,Mn)Si相相反。这些初生相在热处理过程中会出现不同的演变规律。在随后的时效处理过程中,Q'和θ'相的协同析出能显著提高合金的时效硬化潜力。 展开更多
关键词 铝硅铸造合金 真空压铸 热处理 显微组织 力学性能 初生相
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部