期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
1
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
A method for evaluating paleo hydrocarbon pools and predicting secondary reservoirs:a case study of the Sangonghe Formation in the Mosuowan area,Junggar Basin 被引量:2
2
作者 Wei-Jiao Ma Yan-Zhao Wei Shi-Zhen Tao 《Petroleum Science》 SCIE CAS CSCD 2018年第2期252-269,共18页
Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Qua... Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs. 展开更多
关键词 Junggar Basin Paleo hydrocarbon pools Hydrocarbon re-migration pathways secondary reservoirs .Favorable zones
下载PDF
Application and Numerical Simulation of Electromagnetic Stirring in Secondary Cooling Zone During Continuous Casting of Ultra-Thick Slab
3
作者 QU Tian-peng REN Bing-zhi +1 位作者 HAN Zhi-wei FENG Ke 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期977-982,共6页
The segregation of solute elements at solidification front could be greatly improved by application of electromagnetic stirring(SEM)in secondary cooling zone.The location of SEM in secondary cooling zone affects the o... The segregation of solute elements at solidification front could be greatly improved by application of electromagnetic stirring(SEM)in secondary cooling zone.The location of SEM in secondary cooling zone affects the operational effect.In the present study,based on the application of SEM in Ultra-thick slab continuous casting,the shell thickness was calculated by self-programming code and the results were verified by nail-shooting test.A numerical model was established to calculate the fluid flow of molten steel under shell to determine the suitable SEM location in secondary cooling zone.The results shows that the velocity of molten steel increases with increase of stirring current which enhance the circulatory flow of unset steel at solidification front.Whereas,in order to fully develop ability of SEM it is necessary to select suitable stirring current and mode for ultra-thick slab casting.This calculation provides theoretical base for application of SEM in secondary cooling zone during ultra-thick slab casting process. 展开更多
关键词 Electromagnetic stirring secondary cooling zone Ultra-thick slab Continuous casting
原文传递
Mechanism of broadening of slab in continuous casting 被引量:1
4
作者 FU JianXun LI JingShe ZHANG Hui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1228-1233,共6页
The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to th... The mechanism of broadening of slab in continuous casting was studied by numerical simulations and experimental measurements in factories. The mechanism is derived by gradual exclusion of various factors related to the broadening of slab. It is concluded that the slab exposes to no constraint at the direction of narrow face. Because of the static pressure of molten steel, the slab deforms creepily in the direction that consequently results in the broadening of slab. The broadening of slab increases with casting speed and static pressure of molten steel. The decrease of secondary cooling intensity and strength of steel at high temperature also contribute to the broadening of slab. The micro-alloying plays an important role in improving the strength of steel and in reducing the broadening of slab. 展开更多
关键词 broadening of slab continuous casting secondary cooling zone thermo-mecbanical viscoelastic-plastic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部