The Taylor-series expansion method of moments(TEMOM)is modified to match the behavior of real self-preserved aerosols by taking advantage of the numerical results obtained by the sectional method for Brownian coagulat...The Taylor-series expansion method of moments(TEMOM)is modified to match the behavior of real self-preserved aerosols by taking advantage of the numerical results obtained by the sectional method for Brownian coagulation in both continuum and free molecular regimes.The newly proposed model is able to predict the evolution of the zeroth and second moments more accurately than the original TEMOM when the aerosol size distribution approaches self-preserving or the coagulation time is sufficiently long.A special kind of coordinate diagram,which describes the relationship between the moment equations and one non-dimensional moment is first used to investigate different methods of moments that only involve the first three moments.The errors produced by different methods of moments can be qualitatively explained by these diagrams.By polynomial fitting,a new set of moment equations for Brownian coagulation in the free molecular regime is proposed in the framework of the log-normal preserving theory.展开更多
During the desing of channel transect,the paper brings forward golden section method,which is 0.618 methods.In order to reduce the calculation volume of the natural depth of water h 0 and bottomˉwidth b which apply ...During the desing of channel transect,the paper brings forward golden section method,which is 0.618 methods.In order to reduce the calculation volume of the natural depth of water h 0 and bottomˉwidth b which apply trial calculation method and graphic method,and improve the calculate precision,the mathematical model has been built up,the writer combines example to explain the train of thought,the result shows that the calculation precision is high,the correctness is tested and verified by the result which is calculated by hand.It can be referred to the hydroelectric works.展开更多
Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energ...Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.展开更多
In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by thi...In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by this method approaches the true solution if the number of the steps approaches the infinity. However, the measure of the error between the limit solution and the ture solution is not in the pure mathematics sense but in the mechanics sense.展开更多
According to the multi-project and program management theory, this paper analyzes the program generation principle and establishes a program based on progress goals. On the basis of the present situation of calculatio...According to the multi-project and program management theory, this paper analyzes the program generation principle and establishes a program based on progress goals. On the basis of the present situation of calculation of penalty for delay of the bidding section construction period with the critical path method, we studied the effects of contractor-induced delay of the bidding section construction period in detail, including the effects on the construction period of the bidding section itself, the earliest start times of the next bidding section and other subsequent bidding sections, and the construction period of the program, and then constructed a penalty model for delay of the bidding section construction period from the perspective of programs. Using the penalty model, we conducted a practical analysis of penalty for delay of the construction period of the Baoying station program in the South-to-North Water Diversion Project. The model can help determine the amount of penalty for delay of the construction period in bidding sections scientifically and reasonably,展开更多
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu...Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.展开更多
This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, i...This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.展开更多
To determine proper flight parameters of an unmanned helicopter for tea plantation frost protection,field experiments were conducted to study the impact of flight height,speed and interval on airflow disturbance and t...To determine proper flight parameters of an unmanned helicopter for tea plantation frost protection,field experiments were conducted to study the impact of flight height,speed and interval on airflow disturbance and temperature rise around tea canopies based on the analysis and simulation of frost protection with a certain helicopter.The relationship between temperature rise after flight and the above flight parameters was established through a regression orthogonal experiment,based on which the optimal combination of flight parameters was obtained through the single-factor golden section method.The results showed that wind speed around tea canopies decreased with the increase of flight height when flight speed was constant.There was a multivariate linear relationship between temperature rise and flight parameters,and the sequence of flight parameters’influence on frost protection effect was flight interval,flight height,flight speed.The optimal combination of flight parameters were flight height of 4.0 m,flight speed of 6.0 m/s and flight interval of 20 min.After the flight with the above parameters air temperature around tea canopies increased 1.6℃ when background thermal inversion strength was 3.8℃.展开更多
The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of ...The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of charge(SOC)is one of the important parameters.The machine-learning based SOC estimation methods of lithium-ion batteries have attracted substantial interests in recent years.However,a common problem with these models is that their estimation performances are not always stable,which makes them difficult to use in practical applications.To address this problem,an optimized radial basis function neural network(RBF-NN)that combines the concepts of Golden Section Method(GSM)and Sparrow Search Algorithm(SSA)is proposed in this paper.Specifically,GSM is used to determine the optimum number of neurons in hidden layer of the RBF-NN model,and its parameters such as radial base center,connection weights and so on are optimized by SSA,which greatly improve the performance of RBF-NN in SOC estimation.In the experiments,data collected from different working conditions are used to demonstrate the accuracy and generalization ability of the proposed model,and the results of the experiment indicate that the maximum error of the proposed model is less than 2%.展开更多
Engineering vehicles are widely used under various harsh working conditions.For many components in them,service loadings they suffered are usually random and nonstationary due to their remarkable characteristic called...Engineering vehicles are widely used under various harsh working conditions.For many components in them,service loadings they suffered are usually random and nonstationary due to their remarkable characteristic called cyclic operation.To deal with that,section method can be applied.However,this method will neglect those transition cycles caused by switching load section,which can contribute a lot to fatigue.In order to consider those transition cycles,this paper applied the model called“Switching Markov Chain of Turning Points”(SMCTP).Then the expected rain-flow matrix is compared with the overall rain-flow matrix conducted by section method.The comparison result shows that SMCTP can perform well in processing nonstationary loadings.As a result,the Switching Markov Chain method(SMC)was proved to be effective in stochastically characterizing the nonstationary switching loadings of engineering vehicles.展开更多
The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(int...The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.展开更多
Some existing concrete structures not only face threats of possible explosions and impact,but also suffer from long-term fatigue loads induced by traffic or vibration of machines.Researchers have conducted extensive i...Some existing concrete structures not only face threats of possible explosions and impact,but also suffer from long-term fatigue loads induced by traffic or vibration of machines.Researchers have conducted extensive investigations on concrete structures against highly dynamic load,e.g.,blast or impact.However,the fatigue damage and performance deterioration of flexural members due to long-term cyclic loads throughout the service life have not been considered in the analysis of structures against highly dynamic loads.Studies have proven that fatigue damage resulted in degradation of concrete strength and modulus of elasticity(MoE),as well as a reduction in the strength of steel bars.The deteriorated materials caused a reduction in the residual capacity and stiffness of reinforced concrete(RC)structures under quasi-static loads.Therefore,ignoring the effect of fatigue may result in an overestimation of the performance of existing structures against blast or impact loads.This study numerically investigates the effect of fatigue on the impact performance of RC beams.The grid section method(GSM)is proposed to simulate RC beams with fatigue damage.The GSM is applied to divide the RC beam into compressive and tensile zones and assign deteriorated strength and MoE of concrete to corresponding zones according to the stress level.Numerical models of the RC beam with fatigue damage are established using LS-DYNA and validated against experimental results.The effect of different factors,including fatigue cycles,reinforcement ratio,concrete strength,and impact energy,on the impact behavior of RC beams is examined.Based on the results,the correction method is proposed to take into consideration of the fatigue damage in the estimation of RC beams against highly dynamic load.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.11132008)
文摘The Taylor-series expansion method of moments(TEMOM)is modified to match the behavior of real self-preserved aerosols by taking advantage of the numerical results obtained by the sectional method for Brownian coagulation in both continuum and free molecular regimes.The newly proposed model is able to predict the evolution of the zeroth and second moments more accurately than the original TEMOM when the aerosol size distribution approaches self-preserving or the coagulation time is sufficiently long.A special kind of coordinate diagram,which describes the relationship between the moment equations and one non-dimensional moment is first used to investigate different methods of moments that only involve the first three moments.The errors produced by different methods of moments can be qualitatively explained by these diagrams.By polynomial fitting,a new set of moment equations for Brownian coagulation in the free molecular regime is proposed in the framework of the log-normal preserving theory.
文摘During the desing of channel transect,the paper brings forward golden section method,which is 0.618 methods.In order to reduce the calculation volume of the natural depth of water h 0 and bottomˉwidth b which apply trial calculation method and graphic method,and improve the calculate precision,the mathematical model has been built up,the writer combines example to explain the train of thought,the result shows that the calculation precision is high,the correctness is tested and verified by the result which is calculated by hand.It can be referred to the hydroelectric works.
基金the National Natural Science Founda-tion of China (No. 10672100)
文摘Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.
文摘In this paper, the step reduction method is discussed, which was advanced by Prof. Yeh Kai-yuan for calculating a non-uniform beam with various sections. The following result is proved. The approximate solution by this method approaches the true solution if the number of the steps approaches the infinity. However, the measure of the error between the limit solution and the ture solution is not in the pure mathematics sense but in the mechanics sense.
基金supported by the National Science and Technology Plan of China (Major Project of the Eleventh Five-Year Plan, Grant No. 2006BAB04A13)the Philosophy and Social Science Fund of Education Department of Jiangsu Province (Grant No. 07SJD630006)+1 种基金the Third Key Discipline (Techno-Economics and Management) of the Project 211the Key Disciplines of Jiangsu Province (Engineering and Project Management)
文摘According to the multi-project and program management theory, this paper analyzes the program generation principle and establishes a program based on progress goals. On the basis of the present situation of calculation of penalty for delay of the bidding section construction period with the critical path method, we studied the effects of contractor-induced delay of the bidding section construction period in detail, including the effects on the construction period of the bidding section itself, the earliest start times of the next bidding section and other subsequent bidding sections, and the construction period of the program, and then constructed a penalty model for delay of the bidding section construction period from the perspective of programs. Using the penalty model, we conducted a practical analysis of penalty for delay of the construction period of the Baoying station program in the South-to-North Water Diversion Project. The model can help determine the amount of penalty for delay of the construction period in bidding sections scientifically and reasonably,
文摘Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.
基金supported by the Innovation Project of Graduate Education in Jiangsu Province during 2011 (Grant No. CXZZ11_0449)the Research Plan Project of Transportation Science in Jiangsu Province (Grant No. 20100714-30HDKY001-2)
文摘This paper describes some details and procedural steps in the equivalent resistance (E-R) method for simplifying the pier group of the Sutong Bridge, which is located on the tidal reach of the lower Yangtze River, in Jiangsu Province. Using a two-dimensional tidal current numerical model, three different models were established: the non-bridge pier model, original bridge pier model, and simplified bridge pier model. The difference in hydrodynamic parameters, including water level, velocity, and diversion ratio, as well as time efficiency between these three models is discussed in detail. The results show that simplifying the pier group using the E-R method influences the water level and velocity near the piers, but has no influence on the diversion ratio of each cross-section of the Xuliujing reach located in the lower Yangtze River. Furthermore, the simplified bridge pier model takes half the calculation time that the original bridge pier model needs. Thus, it is concluded that the E-R method can be use to simplify bridge piers in tidal river section modeling reasonably and efficiently.
基金The authors are grateful to the financial support by National High Technology Research and Development Program of China(2012AA10A508)National Natural Science Foundation of China(31101089)Priority Academic Program Development of Jiangsu Higher Education Institutions(2014-37)。
文摘To determine proper flight parameters of an unmanned helicopter for tea plantation frost protection,field experiments were conducted to study the impact of flight height,speed and interval on airflow disturbance and temperature rise around tea canopies based on the analysis and simulation of frost protection with a certain helicopter.The relationship between temperature rise after flight and the above flight parameters was established through a regression orthogonal experiment,based on which the optimal combination of flight parameters was obtained through the single-factor golden section method.The results showed that wind speed around tea canopies decreased with the increase of flight height when flight speed was constant.There was a multivariate linear relationship between temperature rise and flight parameters,and the sequence of flight parameters’influence on frost protection effect was flight interval,flight height,flight speed.The optimal combination of flight parameters were flight height of 4.0 m,flight speed of 6.0 m/s and flight interval of 20 min.After the flight with the above parameters air temperature around tea canopies increased 1.6℃ when background thermal inversion strength was 3.8℃.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2022MS015)。
文摘The safety and reliability of battery storage systems are critical to the mass roll-out of electrified transportation and new energy generation.To achieve safe management and optimal control of batteries,the state of charge(SOC)is one of the important parameters.The machine-learning based SOC estimation methods of lithium-ion batteries have attracted substantial interests in recent years.However,a common problem with these models is that their estimation performances are not always stable,which makes them difficult to use in practical applications.To address this problem,an optimized radial basis function neural network(RBF-NN)that combines the concepts of Golden Section Method(GSM)and Sparrow Search Algorithm(SSA)is proposed in this paper.Specifically,GSM is used to determine the optimum number of neurons in hidden layer of the RBF-NN model,and its parameters such as radial base center,connection weights and so on are optimized by SSA,which greatly improve the performance of RBF-NN in SOC estimation.In the experiments,data collected from different working conditions are used to demonstrate the accuracy and generalization ability of the proposed model,and the results of the experiment indicate that the maximum error of the proposed model is less than 2%.
基金National Natural Science Foundation of China(Grant No.51375202)National Natural science fund project(Grant No.51265020)Jilin Province Science and Technology Development Project(No.20160101285JC).
文摘Engineering vehicles are widely used under various harsh working conditions.For many components in them,service loadings they suffered are usually random and nonstationary due to their remarkable characteristic called cyclic operation.To deal with that,section method can be applied.However,this method will neglect those transition cycles caused by switching load section,which can contribute a lot to fatigue.In order to consider those transition cycles,this paper applied the model called“Switching Markov Chain of Turning Points”(SMCTP).Then the expected rain-flow matrix is compared with the overall rain-flow matrix conducted by section method.The comparison result shows that SMCTP can perform well in processing nonstationary loadings.As a result,the Switching Markov Chain method(SMC)was proved to be effective in stochastically characterizing the nonstationary switching loadings of engineering vehicles.
基金supported by the Technology Agency of the Czech Republic under the grant TA03020277by the Czech Science Foundation under grant P101/12/1271
文摘The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical(interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and P?íhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.
基金supported by the National Natural Science Foundation of China (Grant Nos.51908188,51938011)the Natural Science Foundation of Hebei Province (Grant No.E2020402079)。
文摘Some existing concrete structures not only face threats of possible explosions and impact,but also suffer from long-term fatigue loads induced by traffic or vibration of machines.Researchers have conducted extensive investigations on concrete structures against highly dynamic load,e.g.,blast or impact.However,the fatigue damage and performance deterioration of flexural members due to long-term cyclic loads throughout the service life have not been considered in the analysis of structures against highly dynamic loads.Studies have proven that fatigue damage resulted in degradation of concrete strength and modulus of elasticity(MoE),as well as a reduction in the strength of steel bars.The deteriorated materials caused a reduction in the residual capacity and stiffness of reinforced concrete(RC)structures under quasi-static loads.Therefore,ignoring the effect of fatigue may result in an overestimation of the performance of existing structures against blast or impact loads.This study numerically investigates the effect of fatigue on the impact performance of RC beams.The grid section method(GSM)is proposed to simulate RC beams with fatigue damage.The GSM is applied to divide the RC beam into compressive and tensile zones and assign deteriorated strength and MoE of concrete to corresponding zones according to the stress level.Numerical models of the RC beam with fatigue damage are established using LS-DYNA and validated against experimental results.The effect of different factors,including fatigue cycles,reinforcement ratio,concrete strength,and impact energy,on the impact behavior of RC beams is examined.Based on the results,the correction method is proposed to take into consideration of the fatigue damage in the estimation of RC beams against highly dynamic load.