Blockchain has proven to be an emerging technology in the digital world, changing the way everyone thinks about data security and bringing efficiency to several industries. It has already been applied to a wide range ...Blockchain has proven to be an emerging technology in the digital world, changing the way everyone thinks about data security and bringing efficiency to several industries. It has already been applied to a wide range of applications, from financial services and supply chain management to voting systems and identity verification. An organization must verify its candidates before selecting them. Choosing an unqualified candidate can ruin an organization’s reputation. In this paper, a blockchain-based academic certificate authentication system will be used to ensure authenticity and make the assertion of the decentralized system secure. However, the system will generate, authenticate and make corrections on academic certificates. Ultimately, some blockchain-based authentication systems already exist, they can’t correct any errors that occur during generation. A blockchain-based certificate authentication system was built using blockchain technology. Where admin could generate, authenticate and correct the certificate if necessary. The admin can also check how many times a certificate has been modified. Other users can only check the authenticity of the certificates. We’re using two blockchains to enable corrections. Blockchain technology can successfully implement a certificate authentication system. This system will eliminate doubts about the authenticity of certificates, provide fast responses, and ensure reliable and secure storage. The proposed system will help in many ways, such as providing a user-friendly university admission, and smooth job hiring process, etc. In conclusion, our proposed system can permanently eradicate certificate forgeries and create and promote trust in society.展开更多
With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on th...With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on the security of the underlying hardware chip,which often contains critical information,such as encryption key.To understand existing IoT chip security,this study analyzes the security of an IoT security chip that has obtained an Arm Platform Security Architecture(PSA)Level 2 certification.Our analysis shows that the chip leaks part of the encryption key and presents a considerable security risk.Specifically,we use commodity equipment to collect electromagnetic traces of the chip.Using a statistical T-test,we find that the target chip has physical leakage during the AES encryption process.We further use correlation analysis to locate the detailed encryption interval in the collected electromagnetic trace for the Advanced Encryption Standard(AES)encryption operation.On the basis of the intermediate value correlation analysis,we recover half of the 16-byte AES encryption key.We repeat the process for three different tests;in all the tests,we obtain the same result,and we recover around 8 bytes of the 16-byte AES encryption key.Therefore,experimental results indicate that despite the Arm PSA Level 2 certification,the target security chip still suffers from physical leakage.Upper layer application developers should impose strong security mechanisms in addition to those of the chip itself to ensure IoT application security.展开更多
文摘Blockchain has proven to be an emerging technology in the digital world, changing the way everyone thinks about data security and bringing efficiency to several industries. It has already been applied to a wide range of applications, from financial services and supply chain management to voting systems and identity verification. An organization must verify its candidates before selecting them. Choosing an unqualified candidate can ruin an organization’s reputation. In this paper, a blockchain-based academic certificate authentication system will be used to ensure authenticity and make the assertion of the decentralized system secure. However, the system will generate, authenticate and make corrections on academic certificates. Ultimately, some blockchain-based authentication systems already exist, they can’t correct any errors that occur during generation. A blockchain-based certificate authentication system was built using blockchain technology. Where admin could generate, authenticate and correct the certificate if necessary. The admin can also check how many times a certificate has been modified. Other users can only check the authenticity of the certificates. We’re using two blockchains to enable corrections. Blockchain technology can successfully implement a certificate authentication system. This system will eliminate doubts about the authenticity of certificates, provide fast responses, and ensure reliable and secure storage. The proposed system will help in many ways, such as providing a user-friendly university admission, and smooth job hiring process, etc. In conclusion, our proposed system can permanently eradicate certificate forgeries and create and promote trust in society.
基金This work was partially supported by the National Natural Science Foundation of China(Nos.61872243 and U1713212)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515011489)+1 种基金the Natural Science Foundation of Guangdong Province-Outstanding Youth Program(No.2019B151502018)Shenzhen Science and Technology Innovation Commission(No.R2020A045).
文摘With the large scale adoption of Internet of Things(IoT)applications in people’s lives and industrial manufacturing processes,IoT security has become an important problem today.IoT security significantly relies on the security of the underlying hardware chip,which often contains critical information,such as encryption key.To understand existing IoT chip security,this study analyzes the security of an IoT security chip that has obtained an Arm Platform Security Architecture(PSA)Level 2 certification.Our analysis shows that the chip leaks part of the encryption key and presents a considerable security risk.Specifically,we use commodity equipment to collect electromagnetic traces of the chip.Using a statistical T-test,we find that the target chip has physical leakage during the AES encryption process.We further use correlation analysis to locate the detailed encryption interval in the collected electromagnetic trace for the Advanced Encryption Standard(AES)encryption operation.On the basis of the intermediate value correlation analysis,we recover half of the 16-byte AES encryption key.We repeat the process for three different tests;in all the tests,we obtain the same result,and we recover around 8 bytes of the 16-byte AES encryption key.Therefore,experimental results indicate that despite the Arm PSA Level 2 certification,the target security chip still suffers from physical leakage.Upper layer application developers should impose strong security mechanisms in addition to those of the chip itself to ensure IoT application security.