The energy industry and in particular the Oil Refineries are extremely important elements in Iraq’s infrastructure. A terrorist attack on one oil refinery will have a catastrophic impact on oil production and the who...The energy industry and in particular the Oil Refineries are extremely important elements in Iraq’s infrastructure. A terrorist attack on one oil refinery will have a catastrophic impact on oil production and the whole economy. It can also cause serious damage to the environment and even losses of human lives. The security of information systems and industrial control systems such as Supervisory Control and Data Acquisition (SCADA) systems and Distributed Control System (DCS) used in the oil industry is a major part of infrastructure protection strategy. This paper describes an attempt to use several security procedures to design a secure, robust system for the SCADA and DCS systems currently in use in the North Oil Refinery in the city of Baiji located in northern Iraq.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
Transformation from conventional business management systems tosmart digital systems is a recurrent trend in the current era. This has led to digitalrevolution, and in this context, the hardwired technologies in the s...Transformation from conventional business management systems tosmart digital systems is a recurrent trend in the current era. This has led to digitalrevolution, and in this context, the hardwired technologies in the software industry play a significant role However, from the beginning, software security remainsa serious issue for all levels of stakeholders. Software vulnerabilities lead to intrusions that cause data breaches and result in disclosure of sensitive data, compromising the organizations’ reputation that translates into, financial losses andcompromising software usability as well. Most of the data breaches are financiallymotivated, especially in the healthcare sector. The cyber invaders continuouslypenetrate the E- Health data because of the high cost of the data on the darkweb. Therefore, security assessment of healthcare web-based applicationsdemands immediate intervention mechanisms to weed out the threats of cyberattacks for the sake of software usability. The proposed disclosure is a unique process of three phases that are combined by researchers in order to produce andmanage usability management framework for healthcare information system. Inthis most threatened time of digital era where, Healthcare data industry has bornethe brunt of the highest number of data breach episodes in the last few years. Thekey reason for this is attributed to the sensitivity of healthcare data and the highcosts entailed in trading the data over the dark web. Hence, usability managementof healthcare information systems is the need of hour as to identify the vulnerabilities and provide preventive measures as a shield against the breaches. The proposed unique developed model of usability management workflow is preparedby associating steps like learn;analyze and manage. All these steps gives an allin one package for the healthcare information management industry because thereis no systematic model available which associate identification to implementationsteps with different evaluation steps.展开更多
Currently,the majority of institutions have made use of information technologies to improve and develop their diverse educational methods to attract more learners.Through information technologies,e-learning and learni...Currently,the majority of institutions have made use of information technologies to improve and develop their diverse educational methods to attract more learners.Through information technologies,e-learning and learning-on-the go have been adopted by the institutions to provide affordability and flexibility of educational services.Most of the educational institutes are offering online teaching classes using the technologies like cloud computing,networking,etc.Educational institutes have developed their e-learning platforms for the online learning process,through this way they have paved the way for distance learning.But e-learning platform has to face a lot of security challenges in terms of cyberattacks and data hacking through unauthorized access.Fog computing is one of the new technologies that facilitate control over access to big data,as it acts as a mediator between the cloud and the user to bring services closer and reduce their latency.This report presents the use of fog computing for the development of an e-learning platform.and introduced different algorithms to secure the data and information sharing through e-learning platforms.Moreover,this report provides a comparison among RSA,AES,and ECC algorithms for fog-enabled cybersecurity systems.These Algorithms are compared by developing them using python-based language program,in terms of encryption/decryption time,key generations techniques,and other features offered.In addition,we proposed to use a hybrid cryptography system of two types of encryption algorithms such as RSA with AES to fulfill the security,file size,and latency required for the communication between the fog and the e-learning system.we tested our proposed system and highlight the pros and cons of the Integrated Encryption Schemes by performing a testbed for e-learning website scenario using ASP.net and C#.展开更多
The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we ...The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.展开更多
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world sof...This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.展开更多
Decentralized finance(DeFi)is a general term for a series of financial products and services.It is based on blockchain technology and has attracted people’s attention because of its open,transparent,and intermediary ...Decentralized finance(DeFi)is a general term for a series of financial products and services.It is based on blockchain technology and has attracted people’s attention because of its open,transparent,and intermediary free.Among them,the DeFi ecosystem based on Ethereum-based blockchains attracts the most attention.However,the current decentralized financial system built on the Ethereum architecture has been exposed to many smart contract vulnerabilities during the last few years.Herein,we believe it is time to improve the understanding of the prevailing Ethereum-based DeFi ecosystem security issues.To that end,we investigate the Ethereum-based DeFi security issues:1)inherited from the real-world financial system,which can be solved by macro-control;2)induced by the problems of blockchain architecture,which require a better blockchain platform;3)caused by DeFi invented applications,which should be focused on during the project development.Based on that,we further discuss the current solutions and potential directions ofDeFi security.According to our research,we could provide a comprehensive vision to the research community for the improvement of Ethereum-basedDeFi ecosystem security.展开更多
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything...Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.展开更多
Satellite communications have attracted significant interests due to its advantages of large footprint and massive access.However,the commonly used onboard beamforming is hard to achieve reliable security because of t...Satellite communications have attracted significant interests due to its advantages of large footprint and massive access.However,the commonly used onboard beamforming is hard to achieve reliable security because of the highly correlated legitimate and wiretap downlink channels.We exploit the benefits of satellite-terrestrial integrated network(STIN)and a novel absorptive reconfigurable intelligent surface(RIS)for improving the security of satellite downlink communications(SDC)in the presence of eavesdroppers(Eves).This paper aims to maximize the achievable secrecy rate of the earth station(ES)while satisfying the signal reception constraints,harvested power threshold at the RIS,and total transmit power budget.To solve this nonconvex problem,we propose a penalty-function based dual decomposition scheme,which firstly transforms the original problem into a two-layer optimization problem.Then,the outer layer and inner problems are solved by utilizing the successive convex approximation,Lagrange-dual and Rayleigh quotient methods to obtain the beamforming weight vectors and the reflective coefficient matrix.Finally,simulation results verify the effectiveness of the proposed scheme for enhancing the SDC security.展开更多
In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding ...In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding the risk of data loss and data overlapping.The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient.In our work,we propose a data scheduling model for the cloud environment.Themodel is made up of three parts that together help dispatch user data flow to the appropriate cloudVMs.The first component is the Collector Agent whichmust periodically collect information on the state of the network links.The second one is the monitoring agent which must then analyze,classify,and make a decision on the state of the link and finally transmit this information to the scheduler.The third one is the scheduler who must consider previous information to transfer user data,including fair distribution and reliable paths.It should be noted that each part of the proposedmodel requires the development of its algorithms.In this article,we are interested in the development of data transfer algorithms,including fairness distribution with the consideration of a stable link state.These algorithms are based on the grouping of transmitted files and the iterative method.The proposed algorithms showthe performances to obtain an approximate solution to the studied problem which is an NP-hard(Non-Polynomial solution)problem.The experimental results show that the best algorithm is the half-grouped minimum excluding(HME),with a percentage of 91.3%,an average deviation of 0.042,and an execution time of 0.001 s.展开更多
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ...Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.展开更多
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorit...Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.展开更多
Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-r...Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-rently,the Internet of Things(IoT)connects numerous devices to the Internet,enabling autonomous interactions with minimal human intervention.However,implementing and managing an SDN-IoT system is inherently complex,particularly for those with limited resources,as the dynamic and distributed nature of IoT infrastructures creates security and privacy challenges during SDN integration.The findings of this study underscore the primary security and privacy challenges across application,control,and data planes.A comprehensive review evaluates the root causes of these challenges and the defense techniques employed in prior works to establish sufficient secrecy and privacy protection.Recent investigations have explored cutting-edge methods,such as leveraging blockchain for transaction recording to enhance security and privacy,along with applying machine learning and deep learning approaches to identify and mitigate the impacts of Denial of Service(DoS)and Distributed DoS(DDoS)attacks.Moreover,the analysis indicates that encryption and hashing techniques are prevalent in the data plane,whereas access control and certificate authorization are prominently considered in the control plane,and authentication is commonly employed within the application plane.Additionally,this paper outlines future directions,offering insights into potential strategies and technological advancements aimed at fostering a more secure and privacy-conscious SDN-based IoT ecosystem.展开更多
The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnect...The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.展开更多
With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges su...With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,nume...Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,numerous security concerns have been raised by the rapid expansion of the NFT ecosystem.NFT holders are exposed to a plethora of scams and traps,putting their digital assets at risk of being lost.However,academic research on NFT security is scarce,and the security issues have aroused rare attention.In this study,the NFT ecological process is comprehensively explored.This process falls into five different stages encompassing the entire lifecycle of NFTs.Subsequently,the security issues regarding the respective stage are elaborated and analyzed in depth.A matrix model is proposed as a novel contribution to the categorization of NFT security issues.Diverse data are collected from social networks,the Ethereum blockchain,and NFT markets to substantiate our claims regarding the severity of security concerns in the NFT ecosystem.From this comprehensive dataset,nine key NFT security issues are identified from the matrix model and then subjected to qualitative and quantitative analysis.This study aims to shed light on the severity of NFT ecosystem security issues.The findings stress the need for increased attention and proactive measures to safeguard the NFT ecosystem.展开更多
In recent years,blockchain technology integration and application has gradually become an important driving force for new technological innovation and industrial transformation.While blockchain technology and applicat...In recent years,blockchain technology integration and application has gradually become an important driving force for new technological innovation and industrial transformation.While blockchain technology and applications are developing rapidly,the emerging security risks and obstacles have gradually become prominent.Attackers can still find security issues in blockchain systems and conduct attacks,causing increasing losses from network attacks every year.In response to the current demand for blockchain application security detection and assessment in all industries,and the insufficient coverage of existing detection technologies such as smart contract detectiontechnology,this paper proposes a blockchain core technology security assessment system model,and studies the relevant detection and assessment key technologies and systems.A security assessment scheme based on a smart contract and consensus mechanism detection scheme is designed.And the underlying blockchain architecture supports the traceability of detection results using super blockchains.Finally,the functionality and performance of the system were tested,and the test results show that the model and solutions proposed in this paper have good feasibility.展开更多
The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and...The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and access information.Among the many smartphones available,those operating on the Android platform dominate,being the most widely used type.This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years.Therefore,there is an urgent need to develop new methods for detecting Android malware.The literature contains numerous works related to Android malware detection.As far as our understanding extends,we are the first ones to identify dangerous combinations of permissions and system calls to uncover malicious behavior in Android applications.We introduce a novel methodology that pairs permissions and system calls to distinguish between benign and malicious samples.This approach combines the advantages of static and dynamic analysis,offering a more comprehensive understanding of an application’s behavior.We establish covalent bonds between permissions and system calls to assess their combined impact.We introduce a novel technique to determine these pairs’Covalent Bond Strength Score.Each pair is assigned two scores,one for malicious behavior and another for benign behavior.These scores serve as the basis for classifying applications as benign or malicious.By correlating permissions with system calls,the study enables a detailed examination of how an app utilizes its requested permissions,aiding in differentiating legitimate and potentially harmful actions.This comprehensive analysis provides a robust framework for Android malware detection,marking a significant contribution to the field.The results of our experiments demonstrate a remarkable overall accuracy of 97.5%,surpassing various state-of-the-art detection techniques proposed in the current literature.展开更多
文摘The energy industry and in particular the Oil Refineries are extremely important elements in Iraq’s infrastructure. A terrorist attack on one oil refinery will have a catastrophic impact on oil production and the whole economy. It can also cause serious damage to the environment and even losses of human lives. The security of information systems and industrial control systems such as Supervisory Control and Data Acquisition (SCADA) systems and Distributed Control System (DCS) used in the oil industry is a major part of infrastructure protection strategy. This paper describes an attempt to use several security procedures to design a secure, robust system for the SCADA and DCS systems currently in use in the North Oil Refinery in the city of Baiji located in northern Iraq.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
基金supporting this work by Grant Code:(20UQU0066DSR)This project was supported by Taif University Researchers Supporting Project number(TURSP-2020/107),Taif University,Taif,Saudi Arabia.
文摘Transformation from conventional business management systems tosmart digital systems is a recurrent trend in the current era. This has led to digitalrevolution, and in this context, the hardwired technologies in the software industry play a significant role However, from the beginning, software security remainsa serious issue for all levels of stakeholders. Software vulnerabilities lead to intrusions that cause data breaches and result in disclosure of sensitive data, compromising the organizations’ reputation that translates into, financial losses andcompromising software usability as well. Most of the data breaches are financiallymotivated, especially in the healthcare sector. The cyber invaders continuouslypenetrate the E- Health data because of the high cost of the data on the darkweb. Therefore, security assessment of healthcare web-based applicationsdemands immediate intervention mechanisms to weed out the threats of cyberattacks for the sake of software usability. The proposed disclosure is a unique process of three phases that are combined by researchers in order to produce andmanage usability management framework for healthcare information system. Inthis most threatened time of digital era where, Healthcare data industry has bornethe brunt of the highest number of data breach episodes in the last few years. Thekey reason for this is attributed to the sensitivity of healthcare data and the highcosts entailed in trading the data over the dark web. Hence, usability managementof healthcare information systems is the need of hour as to identify the vulnerabilities and provide preventive measures as a shield against the breaches. The proposed unique developed model of usability management workflow is preparedby associating steps like learn;analyze and manage. All these steps gives an allin one package for the healthcare information management industry because thereis no systematic model available which associate identification to implementationsteps with different evaluation steps.
基金This work was supported at Taif University by TRUSP(2020/150).
文摘Currently,the majority of institutions have made use of information technologies to improve and develop their diverse educational methods to attract more learners.Through information technologies,e-learning and learning-on-the go have been adopted by the institutions to provide affordability and flexibility of educational services.Most of the educational institutes are offering online teaching classes using the technologies like cloud computing,networking,etc.Educational institutes have developed their e-learning platforms for the online learning process,through this way they have paved the way for distance learning.But e-learning platform has to face a lot of security challenges in terms of cyberattacks and data hacking through unauthorized access.Fog computing is one of the new technologies that facilitate control over access to big data,as it acts as a mediator between the cloud and the user to bring services closer and reduce their latency.This report presents the use of fog computing for the development of an e-learning platform.and introduced different algorithms to secure the data and information sharing through e-learning platforms.Moreover,this report provides a comparison among RSA,AES,and ECC algorithms for fog-enabled cybersecurity systems.These Algorithms are compared by developing them using python-based language program,in terms of encryption/decryption time,key generations techniques,and other features offered.In addition,we proposed to use a hybrid cryptography system of two types of encryption algorithms such as RSA with AES to fulfill the security,file size,and latency required for the communication between the fog and the e-learning system.we tested our proposed system and highlight the pros and cons of the Integrated Encryption Schemes by performing a testbed for e-learning website scenario using ASP.net and C#.
基金supported by the National Key Research and Development Program of China(2020YFE0200600)the National Natural Science Foundation of China(U22B2026)。
文摘The conventional dynamic heterogeneous redundancy(DHR)architecture suffers from the security threats caused by the stability differences and similar vulnerabilities among the executors.To overcome these challenges,we propose an intelligent DHR architecture,which is more feasible by intelligently combining the random distribution based dynamic scheduling algorithm(RD-DS)and information weight and heterogeneity based arbitrament(IWHA)algorithm.In the proposed architecture,the random distribution function and information weight are employed to achieve the optimal selection of executors in the process of RD-DS,which avoids the case that some executors fail to be selected due to their stability difference in the conventional DHR architecture.Then,through introducing the heterogeneity to restrict the information weights in the procedure of the IWHA,the proposed architecture solves the common mode escape issue caused by the existence of multiple identical error output results of similar vulnerabilities.The experimental results characterize that the proposed architecture outperforms in heterogeneity,scheduling times,security,and stability over the conventional DHR architecture under the same conditions.
基金This work is the result of commissioned research project supported by the Affiliated Institute of ETRI(2022-086)received by Junho AhnThis research was supported by the National Research Foundation of Korea(NRF)Basic Science Research Program funded by the Ministry of Education(No.2020R1A6A1A03040583)this work was supported by Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0008691,HRD Program for Industrial Innovation).
文摘This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world software.The existing analysis of software security vulnerabilities often focuses on specific features or modules.This partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the software.The key novelty lies in overcoming the constraints of partial approaches.The proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security guidelines.Security guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each product.These guidelines are not only practical but also applicable in real-world software,allowing for prioritized security responses.The proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,Information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related software.The analysis resulted in the identification of a total of 121 vulnerabilities.The successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
基金supported by the Key-Area Research and Development Program of Guangdong Province 2020B0101090003CCF-NSFOCUS Kunpeng Scientific Research Fund (CCFNSFOCUS 2021010)+4 种基金Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education under Grant No.1221027National Natural Science Foundation of China (Grant Nos.61902083,62172115,61976064)Guangdong Higher Education Innovation Group 2020KCXTD007 and Guangzhou Higher Education Innovation Group (No.202032854)Guangzhou Fundamental Research Plan of“Municipal-School”Jointly Funded Projects (No.202102010445)Guangdong Province Science and Technology Planning Project (No.2020A1414010370).
文摘Decentralized finance(DeFi)is a general term for a series of financial products and services.It is based on blockchain technology and has attracted people’s attention because of its open,transparent,and intermediary free.Among them,the DeFi ecosystem based on Ethereum-based blockchains attracts the most attention.However,the current decentralized financial system built on the Ethereum architecture has been exposed to many smart contract vulnerabilities during the last few years.Herein,we believe it is time to improve the understanding of the prevailing Ethereum-based DeFi ecosystem security issues.To that end,we investigate the Ethereum-based DeFi security issues:1)inherited from the real-world financial system,which can be solved by macro-control;2)induced by the problems of blockchain architecture,which require a better blockchain platform;3)caused by DeFi invented applications,which should be focused on during the project development.Based on that,we further discuss the current solutions and potential directions ofDeFi security.According to our research,we could provide a comprehensive vision to the research community for the improvement of Ethereum-basedDeFi ecosystem security.
文摘Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.
基金supported by the National Natural Science Foundation of China(No.62201592)the Research Plan Project of NUDT(ZK21-33)the Young Elite Scientist Sponsorship Program of CAST,China(2021-JCJQ-QT-048)。
文摘Satellite communications have attracted significant interests due to its advantages of large footprint and massive access.However,the commonly used onboard beamforming is hard to achieve reliable security because of the highly correlated legitimate and wiretap downlink channels.We exploit the benefits of satellite-terrestrial integrated network(STIN)and a novel absorptive reconfigurable intelligent surface(RIS)for improving the security of satellite downlink communications(SDC)in the presence of eavesdroppers(Eves).This paper aims to maximize the achievable secrecy rate of the earth station(ES)while satisfying the signal reception constraints,harvested power threshold at the RIS,and total transmit power budget.To solve this nonconvex problem,we propose a penalty-function based dual decomposition scheme,which firstly transforms the original problem into a two-layer optimization problem.Then,the outer layer and inner problems are solved by utilizing the successive convex approximation,Lagrange-dual and Rayleigh quotient methods to obtain the beamforming weight vectors and the reflective coefficient matrix.Finally,simulation results verify the effectiveness of the proposed scheme for enhancing the SDC security.
基金the deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFP-2022-34).
文摘In the cloud environment,ensuring a high level of data security is in high demand.Data planning storage optimization is part of the whole security process in the cloud environment.It enables data security by avoiding the risk of data loss and data overlapping.The development of data flow scheduling approaches in the cloud environment taking security parameters into account is insufficient.In our work,we propose a data scheduling model for the cloud environment.Themodel is made up of three parts that together help dispatch user data flow to the appropriate cloudVMs.The first component is the Collector Agent whichmust periodically collect information on the state of the network links.The second one is the monitoring agent which must then analyze,classify,and make a decision on the state of the link and finally transmit this information to the scheduler.The third one is the scheduler who must consider previous information to transfer user data,including fair distribution and reliable paths.It should be noted that each part of the proposedmodel requires the development of its algorithms.In this article,we are interested in the development of data transfer algorithms,including fairness distribution with the consideration of a stable link state.These algorithms are based on the grouping of transmitted files and the iterative method.The proposed algorithms showthe performances to obtain an approximate solution to the studied problem which is an NP-hard(Non-Polynomial solution)problem.The experimental results show that the best algorithm is the half-grouped minimum excluding(HME),with a percentage of 91.3%,an average deviation of 0.042,and an execution time of 0.001 s.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61521003the National Natural Science Foundation of China under Grant No.62072467 and 62002383.
文摘Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs.
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.
基金This work was supported by National Natural Science Foundation of China(Grant No.62341208)Natural Science Foundation of Zhejiang Province(Grant Nos.LY23F020006 and LR23F020001)Moreover,it has been supported by Islamic Azad University with the Grant No.133713281361.
文摘Software-Defined Networking(SDN)represents a significant paradigm shift in network architecture,separating network logic from the underlying forwarding devices to enhance flexibility and centralize deployment.Concur-rently,the Internet of Things(IoT)connects numerous devices to the Internet,enabling autonomous interactions with minimal human intervention.However,implementing and managing an SDN-IoT system is inherently complex,particularly for those with limited resources,as the dynamic and distributed nature of IoT infrastructures creates security and privacy challenges during SDN integration.The findings of this study underscore the primary security and privacy challenges across application,control,and data planes.A comprehensive review evaluates the root causes of these challenges and the defense techniques employed in prior works to establish sufficient secrecy and privacy protection.Recent investigations have explored cutting-edge methods,such as leveraging blockchain for transaction recording to enhance security and privacy,along with applying machine learning and deep learning approaches to identify and mitigate the impacts of Denial of Service(DoS)and Distributed DoS(DDoS)attacks.Moreover,the analysis indicates that encryption and hashing techniques are prevalent in the data plane,whereas access control and certificate authorization are prominently considered in the control plane,and authentication is commonly employed within the application plane.Additionally,this paper outlines future directions,offering insights into potential strategies and technological advancements aimed at fostering a more secure and privacy-conscious SDN-based IoT ecosystem.
文摘The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.
基金supported by the Major Public Welfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.
文摘Digital assets have boomed over the past few years with the emergence of Non-fungible Tokens(NFTs).To be specific,the total trading volume of digital assets reached an astounding$55.5 billion in 2022.Nevertheless,numerous security concerns have been raised by the rapid expansion of the NFT ecosystem.NFT holders are exposed to a plethora of scams and traps,putting their digital assets at risk of being lost.However,academic research on NFT security is scarce,and the security issues have aroused rare attention.In this study,the NFT ecological process is comprehensively explored.This process falls into five different stages encompassing the entire lifecycle of NFTs.Subsequently,the security issues regarding the respective stage are elaborated and analyzed in depth.A matrix model is proposed as a novel contribution to the categorization of NFT security issues.Diverse data are collected from social networks,the Ethereum blockchain,and NFT markets to substantiate our claims regarding the severity of security concerns in the NFT ecosystem.From this comprehensive dataset,nine key NFT security issues are identified from the matrix model and then subjected to qualitative and quantitative analysis.This study aims to shed light on the severity of NFT ecosystem security issues.The findings stress the need for increased attention and proactive measures to safeguard the NFT ecosystem.
基金supported by Education and Scientific Research Special Project of Fujian Provincial Department of Finance(Research on the Application of Blockchain Technology in Prison Law Enforcement Management),Fujian Provincial Social Science Foundation Public Security Theory Research Project(FJ2023TWGA004).
文摘In recent years,blockchain technology integration and application has gradually become an important driving force for new technological innovation and industrial transformation.While blockchain technology and applications are developing rapidly,the emerging security risks and obstacles have gradually become prominent.Attackers can still find security issues in blockchain systems and conduct attacks,causing increasing losses from network attacks every year.In response to the current demand for blockchain application security detection and assessment in all industries,and the insufficient coverage of existing detection technologies such as smart contract detectiontechnology,this paper proposes a blockchain core technology security assessment system model,and studies the relevant detection and assessment key technologies and systems.A security assessment scheme based on a smart contract and consensus mechanism detection scheme is designed.And the underlying blockchain architecture supports the traceability of detection results using super blockchains.Finally,the functionality and performance of the system were tested,and the test results show that the model and solutions proposed in this paper have good feasibility.
文摘The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and access information.Among the many smartphones available,those operating on the Android platform dominate,being the most widely used type.This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years.Therefore,there is an urgent need to develop new methods for detecting Android malware.The literature contains numerous works related to Android malware detection.As far as our understanding extends,we are the first ones to identify dangerous combinations of permissions and system calls to uncover malicious behavior in Android applications.We introduce a novel methodology that pairs permissions and system calls to distinguish between benign and malicious samples.This approach combines the advantages of static and dynamic analysis,offering a more comprehensive understanding of an application’s behavior.We establish covalent bonds between permissions and system calls to assess their combined impact.We introduce a novel technique to determine these pairs’Covalent Bond Strength Score.Each pair is assigned two scores,one for malicious behavior and another for benign behavior.These scores serve as the basis for classifying applications as benign or malicious.By correlating permissions with system calls,the study enables a detailed examination of how an app utilizes its requested permissions,aiding in differentiating legitimate and potentially harmful actions.This comprehensive analysis provides a robust framework for Android malware detection,marking a significant contribution to the field.The results of our experiments demonstrate a remarkable overall accuracy of 97.5%,surpassing various state-of-the-art detection techniques proposed in the current literature.