Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based ...Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based on the following facts: (1) The Sm Nd isochron age of the basic volcanic rocks varies from 1 491 Ma to 1 824 Ma (more than or close to the model age of the lead isotope of all sulfide minerals) in these deposits, with ε (Nd, t ) =(3.48-6.40)±0.80, whose REE composition is enriched in LREE and depleted in HREE, indicating that these volcanic rocks were derived from the mantle or lower crust. (2) The REE composition of some Pb Zn Py ores is also enriched in LREE and depleted in HREE. The chondrite normalized REE patterns are similar to those of the basic volcanic rocks. (3) In the lead isotope composition diagram of Doe and Zartman, most of sphalerite, galena, pyrite, pyrrhotite and chalcopyrite are plotted on both sides of the line for the mantle or between the lines for the mantle and lower crust. (4) Cobalt content of some pyrites is much higher than their nickel content ( w (Co)/ w (Ni)= 11.91- 12.19). (5) Some volcanic blocks and debrises have been picked out from some pyrite and pyrrhotite ores. (6) All Zn Pb Cu Fe sulfide orebodies in these deposits occur in the strata overlying the metamorphic volcanic rocks in the only second ore bearing formation. The Jiashengpan deposit lacks in syndepositional volcanic rocks in the host succession, only Pb and Zn occur without Cu, but the Dongshengmiao, Tanyaokou and Huogeqi deposits with syndepositonal volcanic rocks in the host succession contain Cu, indicating the relatively high ore forming temperatures, besides Pb and Zn. The syndepositional volcanic eruption directly supplied some ore forming metals and resulted in the secular geothermal anomaly favorable for the circulation of the submarine convective hydrothermal system, and in the precipitation of deep mineralizing fluids exhaling into the anoxide basins along the syndepositional fault system in the Langshan Zhaertai rift.展开更多
Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is undertaken to simulate the paleo-hydrological system as if the Mount Isa deposits were being formed in the Mount Isa bas...Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is undertaken to simulate the paleo-hydrological system as if the Mount Isa deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving basin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160°C, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.展开更多
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-typ...The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.展开更多
基金This study is supported by the State"973"High-Tech Project( No. G19990 43 2 15 ) and the Key Project of the Former Ministry o
文摘Ore forming process of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan deposits in Langshan Zhaertai Mesoproterozoic SEDEX metallogenic belt is closely related to the syndepositional volcanic activities based on the following facts: (1) The Sm Nd isochron age of the basic volcanic rocks varies from 1 491 Ma to 1 824 Ma (more than or close to the model age of the lead isotope of all sulfide minerals) in these deposits, with ε (Nd, t ) =(3.48-6.40)±0.80, whose REE composition is enriched in LREE and depleted in HREE, indicating that these volcanic rocks were derived from the mantle or lower crust. (2) The REE composition of some Pb Zn Py ores is also enriched in LREE and depleted in HREE. The chondrite normalized REE patterns are similar to those of the basic volcanic rocks. (3) In the lead isotope composition diagram of Doe and Zartman, most of sphalerite, galena, pyrite, pyrrhotite and chalcopyrite are plotted on both sides of the line for the mantle or between the lines for the mantle and lower crust. (4) Cobalt content of some pyrites is much higher than their nickel content ( w (Co)/ w (Ni)= 11.91- 12.19). (5) Some volcanic blocks and debrises have been picked out from some pyrite and pyrrhotite ores. (6) All Zn Pb Cu Fe sulfide orebodies in these deposits occur in the strata overlying the metamorphic volcanic rocks in the only second ore bearing formation. The Jiashengpan deposit lacks in syndepositional volcanic rocks in the host succession, only Pb and Zn occur without Cu, but the Dongshengmiao, Tanyaokou and Huogeqi deposits with syndepositonal volcanic rocks in the host succession contain Cu, indicating the relatively high ore forming temperatures, besides Pb and Zn. The syndepositional volcanic eruption directly supplied some ore forming metals and resulted in the secular geothermal anomaly favorable for the circulation of the submarine convective hydrothermal system, and in the precipitation of deep mineralizing fluids exhaling into the anoxide basins along the syndepositional fault system in the Langshan Zhaertai rift.
基金Supported by the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher LearningNatural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. RGPIN 261283)National Natural Science Foundation of China (Grant No. 40772126)
文摘Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is undertaken to simulate the paleo-hydrological system as if the Mount Isa deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving basin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160°C, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.
基金supported by the China Schorlarship Council (CSC)the Global Center of Excellence (GCOE) in Novel Carbon Resource Sciences, Kyushu Universitysupported by the Zhaokalong Mine, Qinghai, China
文摘The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.