期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A METROD PREDICTING RESPONSE OF SEDIMENT YIELD TO POSSIBIE CHANGE OF PRECIPITATION DUE TO GLOBAL GREENHOUSE WARMING:AN EXAMPIE FROM NORTH FRINGE OF THE LOESS PLATEAU, CHINA 被引量:1
1
作者 Xu Jiongxin(Institute of Geography, CAS, Beijing 100101 People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z2期159-172,共14页
Starting from the supposition of time-space substitution, the Langbein-Schumm's Law was applied to deal with response of fluvial erosion System to the changes in mean annual Precipitation induced by global green-h... Starting from the supposition of time-space substitution, the Langbein-Schumm's Law was applied to deal with response of fluvial erosion System to the changes in mean annual Precipitation induced by global green-house warming. As a result, a simple method was put forward to predict change in sediment yield, with Ningxia Hui Autonomous Region in the northern fringe of the Loess Plateau of China as an example. Results show that, even the change in mean annual precipitation is the same, the direction and magnitude of the resultant chang in sediment yteld would be quite different in fferent physico-geographical zones. When mean annual precipitation is increased, sediment yield in arid or semi-arid areas with a mean anntal Peripitation of less than 400 mm will be increased, while sediment yield in sub-humid or humid areas with a mean annual precipitation of more than 400 mm will be decreased.Additionally, the complex response of fluvial erosion system in time series due to the lag of change in vegetation behind the changn in precipitation has also been qualitatively discussed in this paper. 展开更多
关键词 sediment yield Langbein-Schumm's Law prediction of changed sediment yield global green-house warming complex response
下载PDF
Assessing the Effect of Natural Controls and Land Use Change on Sediment Yield in a Major Andean River:The Magdalena Drainage Basin,Colombia 被引量:4
2
作者 Juan Dario +5 位作者 Restrepo James P. M. Syvitski 方海燕(译) 《AMBIO-人类环境杂志》 2006年第2期65-74,4,共10页
马格达莱纳河是哥伦比亚安第斯山区的一个世界级的河流网络,该河流年产沙量约为150Mt,是全世界10大主要产沙河流之一。在本研究中,我们探讨主要自然因子和人类活动对马格达莱纳河流域产沙模式的影响,重建该区森林砍伐和农业活动时... 马格达莱纳河是哥伦比亚安第斯山区的一个世界级的河流网络,该河流年产沙量约为150Mt,是全世界10大主要产沙河流之一。在本研究中,我们探讨主要自然因子和人类活动对马格达莱纳河流域产沙模式的影响,重建该区森林砍伐和农业活动时空模式,探讨土地利用变化与产沙趋势的关系。我们的研究结果表明,整个马格达莱纳河流域的产沙量可以用自然变量(包括径流量和最大河水流量)来解释。这两个因子解释了产沙量58%的变化。含沙率和土地利用的时间分析表明,在过去10~20年里流域侵蚀呈现增加的趋势。许多人类活动的影响,包括森林覆被在20年里减小了近40%.农业和牧场增加了65%、土壤保持差、开矿活动,以及城市化的加速,都促进了该地区域尺度上产沙量的增加。 展开更多
关键词 Assessing the Effect of Natural Controls and Land Use change on sediment Yield in a Major Andean River
下载PDF
Variations in tidal currents and suspended sediment concentration of the upper part of the North Channel of Changjiang Estuary over the past 10 years 被引量:1
3
作者 刘高伟 程和琴 +3 位作者 计娜 乔远英 胡浩 王冬梅 《Marine Science Bulletin》 CAS 2015年第2期9-24,共16页
The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the Nor... The tidal current duration (TCD) and velocity (TCV) and suspended sediment concentration (SSC) were measured in the dry season in December, 2011 and in the flood season in June, 2012 at the upper part of the North Channel of Changjiang Estuary. They were assimilated with the measured data in 2003, 2004, 2006 and 2007, using the tidal range's proportion conversion. Variations in TCD and TCV, preferential flow and SSC have been calculated. Influences of typical engineering projects such as Qingcaosha fresh water reservoir, Yangtze River Bridge, and land reclamation on the ebb and flood TCD, TCV and SSC in the North Channel for the last 10 years are discussed. The results show that: (1) currently, in the upper part of North Channel, the ebb tide dominates; after the construction of the typical projects, ebb TCD and TCV tends to be larger and the vertical average ebb and flood SSC decrease during the flood season while SSC increases during the dry season; (2) changes in the vertical average TCV are mainly contributed by seasonal runoff variation during the flood season, which is larger in the flood season than that in the dry season; the controlling parameters of increasing ebb TCD and TCV are those large-scale engineering projects in the North Channel; variation in SSC may result mainly from the reduction of basin annual sediment loads, large-scale nearshore projects and so on. 展开更多
关键词 changes in tidal currents and suspended sediment concentration preferential flow data assimilation large-scale engineering projects Changjiang Estuary
下载PDF
Spatiotemporal Evolution of Runoff and Sediment of the Taohe River and Its Driving Analysis
4
作者 Changquan ZHOU Hong MA +3 位作者 Jiantang XU Dengrui MU Yanbin LIU Xi LIU 《Meteorological and Environmental Research》 CAS 2022年第5期79-86,90,共9页
In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering... In order to explore the spatial and temporal changes of runoff and sediment in the Taohe River and its driving mechanism,Spearman correlation coefficient method,Mann-Kendell mutation test method and ordered clustering method were used to analyze the changes of runoff and sediment discharge and their driving factors in four hydrological stations along the Taohe River from 1957 to 2016.The results showed that the correlation between runoff and sediment of the four hydrological stations along the Taohe River was significant,and the correlation coefficient was 0.728-0.984.The runoff and sediment transport in the interval showed an increasing and decreasing trend.The decrease rate of runoff was 133.82%-216.17%higher than that of Xiabagou station,and the decrease rate of sediment transport was 250.49%-4766.33%higher than that of Xiabagou station.The mutation year of the Taohe River runoff occurred in 1986,and the maximum decrease was 35%.The water-sediment relationship curves of different periods showed that the sediment discharge of the four stations changed abruptly around 1990,and the maximum reduction before and after the mutation was up to 73%,and the sediment discharge in the river channel decreased significantly.The research showed that human activities were the main driving factors for the change of water-sediment relationship in the Taohe River. 展开更多
关键词 The Taohe River RUNOFF sediment discharge Water and sediment changes Water-sediment relationship
下载PDF
Impact of water and sediment discharges on subaqueous delta evolution in Yangtze Estuary from 1950 to 2010 被引量:2
5
作者 Yun-ping YANG Yi-tian LI +1 位作者 Yong-yang FAN Jun-hong ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期331-343,共13页
In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show... In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected. 展开更多
关键词 water discharge sediment discharge seasonal change DELTA Yangtze Estuary
下载PDF
Impacts of precipitation variation and soil and water conservation measures on runoff and sediment yield in the Loess Plateau Gully Region, China 被引量:8
6
作者 XIA Lu SONG Xiao-yu +3 位作者 FU Na MENG Chun-fang LI Huai-you LI Yao-lin 《Journal of Mountain Science》 SCIE CSCD 2017年第10期2028-2041,共14页
The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation... The Loess Plateau of China has experienced a lengthy drought and severe soil erosion.Changes in precipitation and land use largely determine the dynamics of runoff and sediment yield in this region. Trend and mutation analyses were performed on hydrological data(1981–2012) from the Yanwachuan watershed in the Loess Plateau Gully Region to study the evolution characteristics of runoff and sediment yield. A time-series contrasting method also was used to evaluate the effects of precipitation and soil and water conservation(SWC) on runoff and sediment yield. Annual sediment yield declined markedly from 1981 to 2012 although there was no significant change in annual precipitation and annual runoff. Change points of annual runoff and annual sediment yield occurred in 1996 and 1997,respectively. Compared with that in the baseline period(1981–1996), annual runoff and annual sediment yield in the change period(1997–2012)decreased by 17.0% and 76.0%, respectively, but annual precipitation increased by 6.3%. Runoff decreased in the flood season and normal season, but increased in the dry season, while sediment yield significantly declined in the whole study period. The SWC measures contributed significantly to the reduction of annual runoff(137.9%) and annual sediment yield(135%) and were more important than precipitation. Biological measures(forestland and grassland) accounted for 61.04% of total runoff reduction, while engineering measures(terraces and dams) accounted for 102.84% of total sediment yield reduction. Furthermore, SWC measures had positive ecological effects. This study provides a scientific basis for soil erosion control on the Loess Plateau. 展开更多
关键词 Quantitative impact Trend analysis Evolution characteristics Runoff and sediment yield Rainfall Land use change
下载PDF
Simulating cross-sectional geometry of the main channel in response to changes in water and sediment in Lower Yellow River 被引量:4
7
作者 WANG Yanjun WU Baosheng ZHONG Deyu 《Journal of Geographical Sciences》 SCIE CSCD 2020年第12期2033-2052,共20页
To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morph... To understand the non-equilibrium morphological adjustment of a river in response to environmental changes,it is essential to(i)accurately identify how past conditions of water and sediment have impacted current morphological adjustment of the river,and(ii)establish a corresponding simulation for non-equilibrium conditions.Based on discharge and suspended sediment concentration(SSC)as well as 82 cross-sectional data items for the Huayuankou-Lijin reach of the Lower Yellow River in the period 1965-2015,the process of adjustment of the geometry of the main channel(area,width,depth,and geomorphic coefficient),and its responses to changes in discharge and SSC for different reaches are statistically analyzed.Following this,a delayed response model(DRM)of the geometry of the main channel subjected to variations in discharge and SSC is established using a multi-step analytical model,with the discharge and SSC as the main controlling factors.The results show that the area,width,and depth of the main channel decreased initially,then increased,decreased again,and finally increased again.These features of the geometry of the channel were positively correlated with the 4-year moving average discharge and negatively with the 4-year moving average SSC.The geomorphic coefficient for the Huayuankou-Sunkou reach exhibited a trend of decrease,whereas that of the Sunkou-Lijin reach decreased initially,then increased,decreased again,and finally increased again.Except for the Huayuankou-Gaocun reach in 1965-1999,the coefficient was negatively correlated with the 4-year moving average discharge and positively with SSC.The simulated values of the morphological parameters of the main channel for all sub-reaches obtained using the DRM agreed well with the measured values.This indicates that the DRM can be used to simulate the process of response of the cross-sectional geometry of the main channel to variations in the water and sediment.The results of the model show that the adjustment of the geometry of the main channel was affected by the discharge and the SSC at present(30%)as well as for the previous 7 years(70%).The proposed model offers insights into the mechanism whereby past water and sediment influence the current morphological adjustment of the river,and provides an effective method for predicting the magnitude and trend of the geometry of the main channel under different flow conditions. 展开更多
关键词 Lower Yellow River water and sediment changes cross-sectional geometry of the main channel delayed response model
原文传递
Recent changing patterns of the Changjiang(Yangtze River) Estuary caused by human activities 被引量:1
8
作者 WANG Chenglong ZHAO Yifei +2 位作者 ZOU Xinqing XU Xinwanghao GE Chendong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第4期87-96,共10页
To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014... To evaluate the controlling factors for coastline change of the Changjiang(Yangtze River) Estuary since 1974,we extracted the mean high tide line from multi-temporal remote sensing images that span from 1974 to 2014 at 2-year intervals.We chose 42 scenes to constrain the changing pattern of the Changjiang Estuary coastline,and implemented GIS technology to analyze the area change of the Changjiang(Yangtze) Subaerial Delta.Runoff,sediment discharge and coastal engineering were withal considered in the analysis of the coastline changes.The coastline has transgressed seaward since 1974,and a part of it presents inter-annual variations.The area of the Changjiang Subaerial Delta increased by 871 km2,with a net accretion rate of 21.8 km2/a.Based on the change of sediment discharge due to the major projects in the Changjiang River Basin,we divided the changing pattern of the coastline into three stages:the slow accretion stage(1974–1986),the moderate accretion stage(1987–2002),and the rapid accretion stage(2003–2014).Liner regression analysis illustrated that there is a significantly positive correlation between the area changes and sediment discharge in the Chongming Eastern Shoal and Jiuduansha.This suggested that sediment load has a fundamental effect on the evolution of the Changjiang Estuary.Construction of Deep Waterway in the North Passage of the Changjiang River(1998–2010) led to a rapid accretion in the Hengsha Eastern Shoal and Jiuduansha by influencing the hydrodynamics in North Passage.Coastal engineering such as reclamation and harbor construction can also change the morphology of the Changjiang Estuary.We defined a contribution rate of area change to assess the impact of reclamation on the evolution of Changjiang Estuary.It turned out that more than 45.3% of area increment of the Changjiang Estuary was attributed to reclamation. 展开更多
关键词 remote sensing coastline change sediment load coastal engineering Changjiang(Yangtze River) Estuary
下载PDF
和水文地理模式相关的淤积三角洲前积层沉积速率的水槽实验(英文)
9
作者 SUZUKI Taro ENDO Noritaka 《地球环境学报》 2011年第3期450-456,共7页
Foreset profiles of deltaic topography change corresponding to hydraulic conditions,and are influenced by water discharge and change rates of water discharge.To investigate the correlation between the transition of de... Foreset profiles of deltaic topography change corresponding to hydraulic conditions,and are influenced by water discharge and change rates of water discharge.To investigate the correlation between the transition of deposition rates on the foreset and the change rate of water discharge of temporary waxing and subsequent waning flows,we perform experiments on silty deltas that developed under several different hydrographic patterns.The findings are as follows:(1) Under flows with constant discharge,the deposition rate on the foreset was low at high water discharge and high at low water discharge because the separated flow became vigorous at high water discharge and prevented sediment supply onto the foreset.If the water discharge is not constant,the deposition rate shifted concurrently with water discharge only at extremely low change rate.(2i) In a waxing flow at low(but not extremely low) increase rate,the deposition rate gradually decreased with some time lag.(2ii) In the case of high increase discharge,intense erosion on the topset caused by rapid waxing made a large amount of silt move onto the foreset and the deposition rate temporary increased.(3) With ample time after waning stage,the deposition rate recovered to that at constant low water discharge in all runs.However,the transitional processes depended on not only waning rate but also waxing rate at before waning stage.(3i) In the case of high decrease rate of water discharge,the deposition rate abruptly decreased regardless of increase rate.(3ii) Even in the case of low decrease rate of water discharge,if the increase rate before waning stage was high,the deposition rate abruptly decreased.(3iii) Only in the case where both the increase rate and the decrease rate were low,deposition rate gradually increased. 展开更多
关键词 delta system hydrographic patterns deposition rate on the foreset flume experiments change of sediment flux
下载PDF
Adjustment in the main-channel geometry of the lower Yellow River before and after the operation of the Xiaolangdi Reservoir from 1986 to 2015 被引量:9
10
作者 WANG Yanjun WU Baosheng ZHONG Deyu 《Journal of Geographical Sciences》 SCIE CSCD 2020年第3期468-486,共19页
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the... Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC. 展开更多
关键词 lower Yellow River changes in water and sediment conditions Xiaolangdi Reservoir geometry of main channel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部