One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of m...One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.展开更多
The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrolog...The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events(SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km^2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus(R^2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe(R^2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus(R^2=0.84, P<0.01) but also significantly related to the SDRe(R^2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.展开更多
In order to calculate the suspended sediment discharge of the flood debris flows into the main river,a small scale flume test was designed to simulate the process of confluence of Jiangjia Ravine and Xiangjiang River ...In order to calculate the suspended sediment discharge of the flood debris flows into the main river,a small scale flume test was designed to simulate the process of confluence of Jiangjia Ravine and Xiangjiang River in Yunnan province,China.By test observation and data analysis,suspended sediment discharge of Debris flow after its entry into the main river was found to have a close relation with the bulk density,the confluence angle of the Debris flow and the main river,the ratio between per unit width discharge of Debris flow and main river.Based on the measured and simulated results,and statistical analysis,an empirical formula was proposed for the suspended SDR(Sediment Delivery Ratio) of the main river after the confluence of Debris flow.Compared with the observed results of Debris flow in 2009,the error between the data calculated by the empirical formula and the monitored data is only about 10%.展开更多
There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We e...There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.展开更多
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable i...Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.展开更多
Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in an...Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in any given reservoir. Even though a provision is made for every reservoir during planning for a certain storage capacity, specifically for sediment deposition, called dead storage, a major portion of the sediment gets deposited for many years of the reservoir’s life in areas other than the dead storage, and this trend cannot be reversed at easy cost. This study is aimed at the analysis of prevailing sedimentation processes in the nearby dozens of dams found in the Lotsane catchment located within the Limpopo Basin of Botswana, and focuses on assessment of annual sedimentation rate. A spatial analysis and modelling study was conducted based on the Revised Universal Soil Loss Equation and GIS to determine sediment yield and degree of impact of each reservoir for a given landscape, rainfall and catchment heterogeneity. Field observations and soil sampling were carried out in order to determine the factors that lead to reservoir sedimentation. Spatial data on the dams in Lotsane catchment were also collected from Ministry of Agriculture, which were used for ground-truthing, GIS-based calculations and model validation. The average sediment rate and sediment delivery ratio were found to be 1.74 t/ha/year and 81%, respectively. These are useful parameters to estimate service life of the dams and plan remedial measures related to sedimentation problems.展开更多
Sediment delivery ratio(SDR)for fluvial rivers was formulated with sediment rating curve.The observed data of SDR on flood event scale of the Lower Yellow River(LYR)were adopted to examine the formulation and to calib...Sediment delivery ratio(SDR)for fluvial rivers was formulated with sediment rating curve.The observed data of SDR on flood event scale of the Lower Yellow River(LYR)were adopted to examine the formulation and to calibrate the model parameters.A regression formula of SDR was then established and its 95%prediction interval was accordingly quantified to represent its overall uncertainties.Three types of factors including diversity of the incoming flow conditions,river self-regulation processes,and human activities were ascribed to the uncertainties.The following were shown:(1)With the incoming sediment coefficient(ISC)being a variable,it was not necessary to adopt the incoming flow discharge as the second variable in the formulation of SDR;and(2)ISC=0.003 and therefore SDR=2 might be a threshold for distinguishing the characteristics of sediment transport within the LYR.These findings would highlight sediment transport characteristics on the scale of flood event and contribute to uncertainty based analysis of water volume required for sediment transport and channel maintenance of the LYR.展开更多
基金the framework of the SWATCH project (Prima project)funded by the DGRSDT,Algeria
文摘One of the most common types of soil degradation is water erosion.It reduces soil quality at the erosion site and may cause sedimentation issues at the deposition site.This phenomenon is estimated using a variety of models.The Revised Universal Soil Loss Equation(RUSLE)model is the most often used,due to its consistence and low data requirement.It is useful for estimating annual soil loss at the watershed scale.To investigate the relationship between soil erosion and sediment deposition,the combined RUSLE and Sediment Delivery Ratio(SDR)models are used.The Wadi El Hachem watershed is a coastal and mountainous Mediterranean basin with rugged topography and high degree of climatic aggressiveness.Both of these characteristics can have an immediate effect on soil erosion and sediment yield.This research includes estimating the Average Annual Soil Loss(A)and Sediment Yield(SY)in the Wadi El Hachem watershed,mapping different RUSLE factors as well as A and SY,and studying the influence of rainfall erosivity(R)on A and SY in dry and rainy years.The A results vary from 0 to 410 t·ha^(-1)·yr^(-1)with an annual average of 52 t·ha^(-1)·yr^(-1).The Renfro's SDR model was selected as the best model for estimating SY,with standard error,standard deviation,coefficient of variation,and Nash–Sutcliffe efficiency(NSE)values of 0.38%,0.02,0.07%,and 1.00,respectively.The average SY throughout the whole watershed is around 27 t·ha^(-1)·yr^(-1).The SY map for the entire Wadi El Hachem watershed revealed that sediment production zones are mainly concentrated in the Northeast of the basin,at the basin’s outlet,and in the tributaries of the dam.The simulation results of soil loss and sediment yield in dry and rainy years revealed that R is one of the main factors affecting soil erosion and sediment deposition in the Wadi El Hachem watershed.The mean difference in R factor between dry year and rainy year is 671 MJ·mm·ha^(-1)·h^(-1)·yr^(-1).As a result of this fluctuation,the soil loss and sediment yield have increased by 15 and 8 t·ha^(-1)·yr^(-1),respectively.The results of this research can be used to provide scientific and technical support for conservation and management strategies of the Wadi El Hachem watershed.
基金jointly supported by the National key research priorities program of China (2016YFC0402402)National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07101001)+1 种基金the National Natural Science Foundation (41301299)the Construction Project of Innovative Scientific and Technological Talents in Henan Province (162101510004)
文摘The Sediment Delivery Ratio(SDR) has multi-fold environmental implications both in evaluating the soil and water losses and the effectiveness of conservation measures in watersheds. Various factors, including hydrological regime and watershed properties, may influence the SDR at interannual timescales. However, the effect of certain important dynamic factors, such as rainfall peak distribution, runoff erosion power and sediment bulk density, on the sediment delivery ratio of single flood events(SDRe) has received little attention. The Qiaogou headwater basin is in the hilly-gully region of the Chinese Loess Plateau, and it encompasses a 0.45 km^2 catchment. Three large-scale field runoff plots at different geomorphological positions were chosen to obtain the observation data, and the 20-year period between 1986 and 2005 is presented. The results showed that the SDRe of the Qiaogou headwaters varied from 0.49 to 2.77. Among the numerous influential factors, rainfall and runoff were the driving factors causing slope erosion and sediment transport. The rainfall erosivity had a significant positive relationship with the sediment transport modulus(R^2=0.85, P<0.01) but had no significant relationship with SDRe. The rainfall peak coefficient was significantly positively correlated with the SDRe(R^2=0.64, P<0.05), indicating the influence of rainfall energy distribution on the SDRe. The runoff erosion power index was not only significantly related to the sediment transport modulus(R^2=0.84, P<0.01) but also significantly related to the SDRe(R^2=0.57, P<0.01). In addition, the relative bulk density was significantly related to the SDRe, indicating that hyper-concentrated flow characteristics contributed to more transported sediment in the catchment. Thus, the rainfall peak coefficient, runoff erosion power and sediment relative bulk density could be used as dynamic indexes to predict the SDRe in the hilly areas of the Chinese Loess Plateau.
基金supported by the Key Research Program of the Chinese Academy ofSciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China(Grant No.40871024)
文摘In order to calculate the suspended sediment discharge of the flood debris flows into the main river,a small scale flume test was designed to simulate the process of confluence of Jiangjia Ravine and Xiangjiang River in Yunnan province,China.By test observation and data analysis,suspended sediment discharge of Debris flow after its entry into the main river was found to have a close relation with the bulk density,the confluence angle of the Debris flow and the main river,the ratio between per unit width discharge of Debris flow and main river.Based on the measured and simulated results,and statistical analysis,an empirical formula was proposed for the suspended SDR(Sediment Delivery Ratio) of the main river after the confluence of Debris flow.Compared with the observed results of Debris flow in 2009,the error between the data calculated by the empirical formula and the monitored data is only about 10%.
基金funded by National Natural Science Foundation of China (Grant Nos. 41230746, 41271306)the National Key Technology Research and Development Program (Grant No. 2012BAC09B03)the Open-fund Project of Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention (Grant No. JXSB201301)
文摘There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.
基金funded by National Key Technology R&D Program (Grant No.2011BAD31B03)the Action Plan for West Development of Chinese Academy of Sciences(Grant No. KZCX2-XB3-09)+1 种基金the National Natural Science Foundation of China (Grant Nos.41201275,41101259,41001163)Western Light-Western Doctor of CAS
文摘Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.
文摘Sedimentation is a major problem for agricultural dams in Botswana, as it reduces the storage capacity and life span of the reservoirs. The process of sedimentation starts from day one of the impounding of water in any given reservoir. Even though a provision is made for every reservoir during planning for a certain storage capacity, specifically for sediment deposition, called dead storage, a major portion of the sediment gets deposited for many years of the reservoir’s life in areas other than the dead storage, and this trend cannot be reversed at easy cost. This study is aimed at the analysis of prevailing sedimentation processes in the nearby dozens of dams found in the Lotsane catchment located within the Limpopo Basin of Botswana, and focuses on assessment of annual sedimentation rate. A spatial analysis and modelling study was conducted based on the Revised Universal Soil Loss Equation and GIS to determine sediment yield and degree of impact of each reservoir for a given landscape, rainfall and catchment heterogeneity. Field observations and soil sampling were carried out in order to determine the factors that lead to reservoir sedimentation. Spatial data on the dams in Lotsane catchment were also collected from Ministry of Agriculture, which were used for ground-truthing, GIS-based calculations and model validation. The average sediment rate and sediment delivery ratio were found to be 1.74 t/ha/year and 81%, respectively. These are useful parameters to estimate service life of the dams and plan remedial measures related to sedimentation problems.
基金supported by the Ministry of Science and Technology (Grant No.2006BAB06B04)the National Natural Science Foundation of China(Grant No.50725930)
文摘Sediment delivery ratio(SDR)for fluvial rivers was formulated with sediment rating curve.The observed data of SDR on flood event scale of the Lower Yellow River(LYR)were adopted to examine the formulation and to calibrate the model parameters.A regression formula of SDR was then established and its 95%prediction interval was accordingly quantified to represent its overall uncertainties.Three types of factors including diversity of the incoming flow conditions,river self-regulation processes,and human activities were ascribed to the uncertainties.The following were shown:(1)With the incoming sediment coefficient(ISC)being a variable,it was not necessary to adopt the incoming flow discharge as the second variable in the formulation of SDR;and(2)ISC=0.003 and therefore SDR=2 might be a threshold for distinguishing the characteristics of sediment transport within the LYR.These findings would highlight sediment transport characteristics on the scale of flood event and contribute to uncertainty based analysis of water volume required for sediment transport and channel maintenance of the LYR.