The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenet...The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.展开更多
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-typ...The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.展开更多
The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a...The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a typical double-layer structure,having a stratified,stratoid,lenticular upper part and a veined,stockwork-like lower part.The occurrence of the upper orebody is consistent with that of the volcanic tuff wall rock.The ore minerals are mainly chalcopyrite,pyrite,sphalerite,galena and magnetite,the altered minerals mainly being silicified,such as sericite,chlorite,epidote,garnet.The garnetized skarn,being stratiform and stratoid,is closely related to the upper part of the orebody.Geological observations show that the limestone in the ore-bearing Yamansu Formation is not marbleized and skarnized.Spatially,it is associated with the ferromanganese deposits in the marine volcanic rocks of the Yamansu Formation.These geological features reflect the likelihood that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit.The results from the EPMA show that the garnet is mainly composed of grossular-andradite series,contents being in a range of 34.791-37.8%SiO_(2),32.493-34.274%CaO,8.454-27.275%FeO,0.012-15.293%Al_(2)O_(3),0.351-1.413%MnO,and lower values of 0.013-1.057%TiO_(2).The content of SiO_(2) vs.CaO and FeO vs.Al_(2)O_(3) has a significant positive correlation.The results of ICP-MS analysis for the garnet show that the REE pattern is oblique to right in general.The total amount of rare earth elements is relatively low,ΣREE=71.045-826.52 ppm,which is relatively enriched for LREE and depleted for HREE.LREE/HREE=8.66-4157.75,La_(N)/Yb_(N)=23.51-984.34,with obvious positive Eu and Ce anomalies(δEu=2.27-76.15,δCe=0.94-1.85).This result is similar to the REE characteristics of ore-bearing rhyolite volcanic rocks,showing that the garnet was formed in an oxidizing environment and affected by clear hydrothermal activity.The U-Pb isotopic dating of garnet by fs-LA-HR-ICP-MS gives an age of 316.3±4.4 Ma(MSWD=1.4),which is consistent with the formation time of the Yamansu Formation.According to the study of deposit characteristics and geochemical characteristics,this study concludes that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit,the garnet being caused by hydrothermal exhalative sedimentation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41873058 and 41462001)the Natural Science and Technology Foundation of Guizhou Province,China(Grant No.JZ[2015]2009)。
文摘The Wuchuan-Sihui-Shaoguan(WSS)exhalative sedimentary pyrite belt in the southwestern part of the Qinzhou-Hangzhou(Qin-Hang)belt is the most important sulfur industry base in China.However,a wide range of metallogenetic ages spanning from Ediacaran to Devonian has been reported in the literature.This age range does not support the idea that the typical character of"coeval mineralization"in an exhalative sedimentary mineralization belt in China and worldwide.Therefore,the precise determination of mineralization ages of representative deposits is necessary to provide guides for exploration and metallogenetic models.The Dajiangping pyrite deposit is a typical example of this kind of deposits and is also the largest deposit with a proven reserve of 210 Mt.This deposit was thought to have formed in Ediacaran or Devonian.In this study,2-3 layers of 10-25 cm thick 2M1-type microcrystalline muscovite slate abruptly embedded in the No.Ⅳmassive orebody of the deposit has been identified to be low-grade metamorphic K-bentonite.A Concordia zircon LA-ICP-MS U-Pb age of 432.5±1.3 Ma(mean standard weighted deviation of concordance and equivalence=1.2;N=11)has been yielded for the low-grade metamorphic K-bentonite.This age is distinctly different from the Rb-Sr isochron age of630.1±7.3 Ma for siliceous rock at the top of the No.Ⅲbanded orebody and the Re-Os isochron age of 389±62 Ma for pyrites from a laminated orebody.Instead,it is close to the intercept age(429 Ma)of the youngest detrital zircons from sandstone interlayers of the No.Ⅲbanded orebody.The Concordia age is also coincident with those of the Late Caledonian(400-460 Ma)magmatism-metamorphism events which are widely distributed in Cathaysia Block.Particularly,it agrees well with that of the Early Silurian extensional volcanism(434-444 Ma)which have been revealed in the Dabaoshan,Siqian-Hekou,and Nanjing volcanic basins in northern Guangdong Province and southern Jiangxi Province.Hence,the dating result in this study confirms that the sedimentary time of the ore-host Daganshan Formation is Early Silurian,and implies that the mineralization age of the Dajiangping pyrite deposit should also be Early Silurian.In combination with the Early Silurian age of Shezui pyrite deposit and the Dabaoshan volcanic basin along the WSS pyrite belt,it could be inferred that the WSS pyrite belt provides a record of the northern expanding of Qinzhou-Fangcheng trough in Early Silurian and that the exhalative pyrite mineralization was triggered by the postcollisional extension of the margin of Cathaysia Block after the intracontinental collision between Cathaysia Block and Yangtze Block during Late Caledonian stage.
基金supported by the China Schorlarship Council (CSC)the Global Center of Excellence (GCOE) in Novel Carbon Resource Sciences, Kyushu Universitysupported by the Zhaokalong Mine, Qinghai, China
文摘The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the j13CpDB ranges from -2.01 to 3.34 (%0) whereas the JISOsMow ranges from 6.96 to 18.95 (%0). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181~C, with salinity values of 1.06 to 8.04 wt% NaCI eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42- (F-, CI--H20 system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.
基金by a grant from the Xinjiang Geological Exploration Fund Project Management Center(Grant No.Y14-5-LQ05)。
文摘The Aqishan lead-zinc deposit,located in the Jueluotag metallogenic belt of eastern Tianshan,Xinjiang,Northwest China,has a stratiform occurrence in the marine volcanic tuff of the Yamansu Formation.The ore body has a typical double-layer structure,having a stratified,stratoid,lenticular upper part and a veined,stockwork-like lower part.The occurrence of the upper orebody is consistent with that of the volcanic tuff wall rock.The ore minerals are mainly chalcopyrite,pyrite,sphalerite,galena and magnetite,the altered minerals mainly being silicified,such as sericite,chlorite,epidote,garnet.The garnetized skarn,being stratiform and stratoid,is closely related to the upper part of the orebody.Geological observations show that the limestone in the ore-bearing Yamansu Formation is not marbleized and skarnized.Spatially,it is associated with the ferromanganese deposits in the marine volcanic rocks of the Yamansu Formation.These geological features reflect the likelihood that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit.The results from the EPMA show that the garnet is mainly composed of grossular-andradite series,contents being in a range of 34.791-37.8%SiO_(2),32.493-34.274%CaO,8.454-27.275%FeO,0.012-15.293%Al_(2)O_(3),0.351-1.413%MnO,and lower values of 0.013-1.057%TiO_(2).The content of SiO_(2) vs.CaO and FeO vs.Al_(2)O_(3) has a significant positive correlation.The results of ICP-MS analysis for the garnet show that the REE pattern is oblique to right in general.The total amount of rare earth elements is relatively low,ΣREE=71.045-826.52 ppm,which is relatively enriched for LREE and depleted for HREE.LREE/HREE=8.66-4157.75,La_(N)/Yb_(N)=23.51-984.34,with obvious positive Eu and Ce anomalies(δEu=2.27-76.15,δCe=0.94-1.85).This result is similar to the REE characteristics of ore-bearing rhyolite volcanic rocks,showing that the garnet was formed in an oxidizing environment and affected by clear hydrothermal activity.The U-Pb isotopic dating of garnet by fs-LA-HR-ICP-MS gives an age of 316.3±4.4 Ma(MSWD=1.4),which is consistent with the formation time of the Yamansu Formation.According to the study of deposit characteristics and geochemical characteristics,this study concludes that the Aqishan lead-zinc deposit is a hydrothermal exhalation sedimentary deposit,the garnet being caused by hydrothermal exhalative sedimentation.