Ancient outwash accumulations, deposited in Pleistocene with complicated sedimentary characteristics, are discovered in the midstream valley of Dadu River, Southwestern China. Their sedimentation characteristics are i...Ancient outwash accumulations, deposited in Pleistocene with complicated sedimentary characteristics, are discovered in the midstream valley of Dadu River, Southwestern China. Their sedimentation characteristics are investigated for gaining a deep insight into the dependency of Paleoclimate changes in this area. This is achieved by means of detailed site investigation, sampling and laboratory tests (grain size distribution and Electron Spin Resonance dating tests) for two representative outwash accumulations. Based on the present study, several main conclusions are drown out as follows: 1) The accumulations are composed mainly of coarse soils (coarse fraction is over 50%) and very coarse soils (coarse fraction is about 20%-35%, and very coarse fraction is over 55%); 2) The coarse soils are sub-rounded well-sorted and sub-stratified to well-stratified, while the very coarse soils exhibit sub-rounded to sub-angular and poorly-sorted; 3) The accumulations are postulated to have been intermittently deposited in three time periods. This is evidenced by two layers of weathered/ residual clay, purple to brick red in color; and 4) It is inferred that the temperature in the study area increased over three time periods, i.e., 280 ka B.P. to 120 ka B.P., 110 ka B.P. to 80 ka B.P. and 70 ka B. P. to 25 ka B.P., and declined twice at 120 ka B.P. and 77 ka B.P. respectively.展开更多
Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Ea...Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.展开更多
基金financially supported by the Young People's Foundation of State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (SKLGP2010Z007)
文摘Ancient outwash accumulations, deposited in Pleistocene with complicated sedimentary characteristics, are discovered in the midstream valley of Dadu River, Southwestern China. Their sedimentation characteristics are investigated for gaining a deep insight into the dependency of Paleoclimate changes in this area. This is achieved by means of detailed site investigation, sampling and laboratory tests (grain size distribution and Electron Spin Resonance dating tests) for two representative outwash accumulations. Based on the present study, several main conclusions are drown out as follows: 1) The accumulations are composed mainly of coarse soils (coarse fraction is over 50%) and very coarse soils (coarse fraction is about 20%-35%, and very coarse fraction is over 55%); 2) The coarse soils are sub-rounded well-sorted and sub-stratified to well-stratified, while the very coarse soils exhibit sub-rounded to sub-angular and poorly-sorted; 3) The accumulations are postulated to have been intermittently deposited in three time periods. This is evidenced by two layers of weathered/ residual clay, purple to brick red in color; and 4) It is inferred that the temperature in the study area increased over three time periods, i.e., 280 ka B.P. to 120 ka B.P., 110 ka B.P. to 80 ka B.P. and 70 ka B. P. to 25 ka B.P., and declined twice at 120 ka B.P. and 77 ka B.P. respectively.
文摘Aptian is characterized by widespread deposition of organic-rich sediment.The Aptian bitumen limestone horizon,which is thin decimetre-thick sequences,locally crops out in the Kircaova area,Eastern Black Sea Region(Eastern Pontides).They are well correlated with Aptian bitumen limestone in the other Tethys Reams.They are proposed as episodes of increased organic matter.However,background factors controlling organic matter enrichment are poorly known.In this study,we present new inorganic geochemistry,including trace elements,rare earth elements(REE),redox-sensitive elements(RSE),stable-isotopes(δ~(18)O andδ~(13)C),and total organic carbon(TOC).We integrated new geochemical data with existing stratigraphy,paleontology,and organic chemistry data to provide new insight into the depositional environment and paleoclimate conditions during Aptian.The lacustrine bitumen limestone(LBL)samples have variedδ~(13)C(ave.-1.45‰)andδ~(18)O(ave.-4.50‰).They possess distinct REE patterns,with an average of REE(ave.14.45 ppm)and Y/Ho(ave.35)ratios.In addition,they have variable Nd/YbN(0.28-0.81;ave.0.56)and Ce/Ce*(0.68-0.97;ave.0.86),and relatively high Eu^(*)/Eu(1.23-1.53;ave.1.35).They display seawater signatures with reduced oxygen conditions.The enrichment in RSE(Mo,Cu,Ni,and Zn)and the low Mo/TOC(0.70-3.69;ave.2.41)support a certain degree of water restriction.The high Sr/Ba,Sr/Cu,Ga/Rb,and K/Al records of the LBL facies suggest hot house climatic conditions.The sedimentary environment was probably an isolated basin that is transformed from the marine basin.In addition to depositional conditions,the regional parameters such as the climate,increased run-off period,nutrient levels,alkalinity level,and dominant carbonate producers favored the enrichment in organic matter of LBL facies.Thus,extreme greenhouse palaeoclimate conditions have an important role in organic matter enrichment in the isolated basin.Our results are conformable with the published data from marine,semi-restricted basin,and lacustrine settings in the different parts of the Tethys margin.Thus,this approach provides the first insight into the Aptian greenhouse paleo-climate conditions of the Eastern Black Sea Region,NE Turkey.