The environmental impact assessment (EIA) of cascade dams building in international rivers has been widely discussed in China and ASEAN countries since the 1990s. In Southwest China, all the great mountainous rivers...The environmental impact assessment (EIA) of cascade dams building in international rivers has been widely discussed in China and ASEAN countries since the 1990s. In Southwest China, all the great mountainous rivers have been the major state base for large-scale hydropower development. Among these rivers, the environmental change and response of the watercourse under the cascade dams building in the upper Mekong (called Lancang River in China) has been the focus in recent 20 years. In this paper, the Lancang River, which has over 25 years of large-scale hydropower development, was chosen as a case study for establishing the affected evaluation indicators system and its regression model of runoff and sediment, determining the indicators weight by the hierarchy analysis method and factor analysis method, and setting up the quantitative evaluation models of indicators affected level based on the "marginal efficiency" principle. Using these methods and model established, the influence degree of runoff and sediment in the Lancang River from 1986 to 2007 were assessed. The major results are: (1) the impact of sediment transport change by the cascade development is much higher than that of the runoff change; (2) the years' number with different impact levels respectively are 72.7% as the "smallest" level, 18.2% as "smaller", and 9.1% as "general"; (3) the change process of runoff and sediment shows a "U-shaped" pattern, which indicates the balance of sediment change because of the interaction of sediment reduction by Manwan reservoir storage and the increase by the Dachaoshan dam construction.展开更多
A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis.Macrophyte biomass showed coincident growth tre...A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis.Macrophyte biomass showed coincident growth trends with time, but different variation rates with nitrogen treatment. All plant growth indexes with nitrogen addition(N, NH4Cl100, 200, 400 mg/kg, respectively) were lower than those of the control group. Four humiclike components, two autochthonous tryptophan-like components, and one autochthonous tyrosine-like component were identified using the parallel factor analysis model. The results suggested that the relative component changes of fluorescence in the colonized sediments were in direct relation to the change of root biomass with time. In the experiment, the root formation parameters of the plants studied were significantly affected by adding N in sediments, which may be related to the reason that the root growth was affected by N addition.Adding a low concentration of N to sediments can play a part in supplying nutrients to the plants. However, the intensive uptake of NH4^+may result in an increase in the intracellular concentration of ammonia, which is highly toxic to the plant cells. Hence, our experiment results manifested that organic matter cycling in the macrophyte-dominated sediment was influenced by nitrogen enrichment through influencing vegetation and relevant microbial activity.展开更多
基金The Key Project of National Natural Science Foundation of China, No.U0936602National Key Technologies R&D Program of China during the 12th Five-Year Plan Period, No.2010BAE00739
文摘The environmental impact assessment (EIA) of cascade dams building in international rivers has been widely discussed in China and ASEAN countries since the 1990s. In Southwest China, all the great mountainous rivers have been the major state base for large-scale hydropower development. Among these rivers, the environmental change and response of the watercourse under the cascade dams building in the upper Mekong (called Lancang River in China) has been the focus in recent 20 years. In this paper, the Lancang River, which has over 25 years of large-scale hydropower development, was chosen as a case study for establishing the affected evaluation indicators system and its regression model of runoff and sediment, determining the indicators weight by the hierarchy analysis method and factor analysis method, and setting up the quantitative evaluation models of indicators affected level based on the "marginal efficiency" principle. Using these methods and model established, the influence degree of runoff and sediment in the Lancang River from 1986 to 2007 were assessed. The major results are: (1) the impact of sediment transport change by the cascade development is much higher than that of the runoff change; (2) the years' number with different impact levels respectively are 72.7% as the "smallest" level, 18.2% as "smaller", and 9.1% as "general"; (3) the change process of runoff and sediment shows a "U-shaped" pattern, which indicates the balance of sediment change because of the interaction of sediment reduction by Manwan reservoir storage and the increase by the Dachaoshan dam construction.
基金supported by the National Basic Research Program (973) of China (No. 2012CB417004)the National Natural Science Foundation of China (Nos. U1202235,41173118, 41301544)the Shandong Provincial Natural Science Foundation (No. ZR2012DQ003)
文摘A controlled experiment was designed to resolve the influence of nitrogen abundance on sediment organic matters in macrophyte-dominated lakes using fluorescence analysis.Macrophyte biomass showed coincident growth trends with time, but different variation rates with nitrogen treatment. All plant growth indexes with nitrogen addition(N, NH4Cl100, 200, 400 mg/kg, respectively) were lower than those of the control group. Four humiclike components, two autochthonous tryptophan-like components, and one autochthonous tyrosine-like component were identified using the parallel factor analysis model. The results suggested that the relative component changes of fluorescence in the colonized sediments were in direct relation to the change of root biomass with time. In the experiment, the root formation parameters of the plants studied were significantly affected by adding N in sediments, which may be related to the reason that the root growth was affected by N addition.Adding a low concentration of N to sediments can play a part in supplying nutrients to the plants. However, the intensive uptake of NH4^+may result in an increase in the intracellular concentration of ammonia, which is highly toxic to the plant cells. Hence, our experiment results manifested that organic matter cycling in the macrophyte-dominated sediment was influenced by nitrogen enrichment through influencing vegetation and relevant microbial activity.