期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
RNA-Seq Analysis of Developing Nasturtium Seeds (Tropaeolum majus): Identification and Characterization of an Additional Galactosyltransferase Involved in Xyloglucan Biosynthesis 被引量:6
1
作者 Jacob K. Jensen Alex Schultink +2 位作者 Kenneth Keegstra Curtis G. Wilkerson Markus Pauly 《Molecular Plant》 SCIE CAS CSCD 2012年第5期984-992,共9页
A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis, cDNA sequences were generated from developing nasturtium (Tropaeolum ma... A deep-sequencing approach was pursued utilizing 454 and Illumina sequencing methods to discover new genes involved in xyloglucan biosynthesis, cDNA sequences were generated from developing nasturtium (Tropaeolum majus) seeds, which produce large amounts of non-fucosylated xyloglucan as a seed storage polymer. In addition to known xyloglucan biosynthetic genes, a previously uncharacterized putative xyloglucan galactosyltransferase was iden- tified. Analysis of an Arabidopsis thaliana mutant line defective in the corresponding ortholog (AT5G62220) revealed that this gene shows no redundancy with the previously characterized xyloglucan galactosyltransferase, MUR3, but is required for galactosyl-substitution of xyloglucan at a different position. The gene was termed XLT2 for Xyloglucan L-side chain galactosylTransferase position 2. It represents an enzyme in the same subclade of glycosyltransferase family 47 as MUR3. A double mutant defective in both MUR3 (mur3.1) and XLT2 led to an Arabidopsis plant with xyloglucan that consists essentially of only xylosylated glucosyl units, with no further substitutions. 展开更多
关键词 seed biology cell walls nasturtium storage polymers xyloglucan.
原文传递
The Level of Expression of Thioredoxin is Linked to Fundamental Properties and Applications of Wheat Seeds 被引量:5
2
作者 Yong-Chun Li Jiang-Ping Ren +11 位作者 Myeong-Je Cho Su-Mei Zhou Yong-Bum Kim Hong-Xiang Guo Joshua H. Wong Hong-Bin Niu Hyun-Kyung Kim Susumu Morigasaki Peggy G. Lemaux Oscar L. Frick Jun Yin Bob B. Buchanan 《Molecular Plant》 SCIE CAS CSCD 2009年第3期430-441,共12页
Work with cereals (barley and wheat) and a legume (Medicago truncatula) has established thioredoxin h (Trx h) as a central regulatory protein of seeds. Trx h acts by reducing disulfide (S-S) groups of diverse ... Work with cereals (barley and wheat) and a legume (Medicago truncatula) has established thioredoxin h (Trx h) as a central regulatory protein of seeds. Trx h acts by reducing disulfide (S-S) groups of diverse seed proteins (storage proteins, enzymes, and enzyme inhibitors), thereby facilitating germination. Early in vitro protein studies were complemented with experiments in which barley seeds with Trx h overexpressed in the endosperm showed accelerated germination and early or enhanced expression of associated enzymes (α-amylase and pullulanase). The current study extends the transgenic work to wheat. Two approaches were followed to alter the expression of Trx h genes in the endosperm: (1) a hordein promoter and its protein body targeting sequence led to overexpression of Trx hS, and (2) an antisense construct of Trx h9 resulted in cytosolic underexpression of that gene (Arabidopsis designation). Underexpression of Trx h9 led to effects opposite to those observed for overexpression Trx h5 in barley--retardation of germination and delayed or reduced expression of associated enzymes. Similar enzyme changes were observed in developing seeds. The wheat lines with underexpressed Trx showed delayed preharvest sprouting when grown in the greenhouse or field without a decrease in final yield. Wheat with overexpressed Trx h5 showed changes commensurate with earlier in vitro work: increased solubility of disulfide proteins and lower aUergenicity of the gliadin fraction. The results are further evidence that the level of Trx h in cereal endosperm determines fundamental properties as well as potential applications of the seed. 展开更多
关键词 metabolic regulation molecular physiology seed biology preharvest sprouting seed germination thioredoxin h wheat allergenicity.
原文传递
Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses: Early Stress Responses and Effects on Storage Compound Biosynthesis 被引量:6
3
作者 Elke Mangelsen Joachim Kilian +3 位作者 Klaus Harter Christer Jansson Dierk Wanke Eva Sundberg 《Molecular Plant》 SCIE CAS CSCD 2011年第1期97-115,共19页
High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investig... High-temperature stress, like any abiotic stress, impairs the physiology and development of plants, including the stages of seed setting and ripening. We used the Affymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley (Hordeum vulgare) seeds, termed caryopses, after 0.5, 3, and 6 h of heat stress exposure; 958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses' early heat stress responses. Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development. Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis. Metadata analysis identified embryo and endosperm as primary locations of heat stress responses, indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis. A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat- and caryopsis-specific stress-responsive genes. Summarized, our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops. 展开更多
关键词 Abiotic/environmental stress gene expression transcriptome analysis seed biology BARLEY CARYOPSIS CROPS heat shock.
原文传递
Farnesylcysteine Lyase Regulation of Abscisic Arabidopsis is Involved in Negative Acid Signaling in
4
作者 David H. Huizinga Ryan Denton +4 位作者 Kelly G. Koehler Ashley Tomasello Lyndsay Wood Stephanie E. Sen Dring N. Crowell 《Molecular Plant》 SCIE CAS CSCD 2010年第1期143-155,共13页
The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC... The Arabidopsis FCLY gene encodes a specific farnesylcysteine (FC) lyase, which is responsible for the oxidative metabolism of FC to farnesal and cysteine. In addition, fcly mutants with quantitative decreases in FC lyase activity exhibit an enhanced response to ABA. However, the enzymological properties of the FCLY-encoded enzyme and its precise role in ABA signaling remain unclear. Here, we show that recombinant Arabidopsis FC lyase expressed in insect cells exhib- its high selectivity for FC as a substrate and requires FAD and molecular oxygen for activity. Arabidopsis FC lyase is also shown to undergo post-translational N-glycosylation. FC, which is a competitive inhibitor of isoprenylcysteine methyltransferase (ICMT), accumulates in fcly mutants. Moreover, the enhanced response of fcly mutants to ABA is reversed by ICMToverexpression. These observations support the hypothesis that the ABA hypersensitive phenotype of fcly plants is the result of FC accumulation and inhibition of ICMT. 展开更多
关键词 Hormone biology primary metabolism seed biology STOMATA membrane proteins Arabidopsis.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部