期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Germination Biology and Occurrence of Polyembryony in Two Forms of Cats Claw Creeper Vine, Dolichandra unguis-cati (Bignoniaceae): Implications for Its Invasiveness and Management 被引量:1
1
作者 Joshua C. Buru Kunjithapatham Dhileepan +1 位作者 Olusegun O. Osunkoya Tanya Scharaschkin 《American Journal of Plant Sciences》 2016年第3期657-670,共14页
Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), is a major environmental weed in Australia. Two forms (“long” and “short” pod) of the weed occur in Austral... Cat’s claw creeper vine, Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), is a major environmental weed in Australia. Two forms (“long” and “short” pod) of the weed occur in Australia. This investigation aimed to evaluate and compare germination behavior and occurrence of polyembryony (production of multiple seedlings from a single seed) in the two forms of the weed. Seeds were germinated in growth chambers set to 10/20&deg;C, 15/25&deg;C, 20/30&deg;C, 30/45&deg;C and 25&deg;C, representing ambient temperature conditions of the region. Germination and polyembryony were monitored over a period of 12 weeks. For all the treatments in this study, seeds from the short pod form exhibited significantly higher germination rates and higher occurrence of polyembryony than those from the long pod form. Seeds from the long pod form did not germinate at the lowest temperature of 10/20&deg;C;in contrast, those of the short pod form germinated under this condition, albeit at a lower rate. Results from this study could explain why the short pod form of D. unguis-cati is the more widely distributed form in Australia, while the long pod form is confined to a few localities. The results have implication in predicting future ranges of both forms of the invasive D. unguis-cati, as well as inform management decisions for control of the weed. 展开更多
关键词 Macfadyena unguis-cati Plant Sexual Reproduction Plant Invasion Propagule Pressure seed ecology Woody Vine
下载PDF
Impact of forest fire on soil seed bank composition in Himalayan Chir pine forest 被引量:1
2
作者 Bobbymoore Konsam Shyam S.Phartyal Nagendra P.Todaria 《Journal of Plant Ecology》 SCIE CSCD 2020年第2期177-184,共8页
Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest,it is important to understand their postfire regeneration strategies.The primary aim of the study was ... Aims To explain how plant community copes with a recurring anthropogenic forest fire in Himalayan Chir pine forest,it is important to understand their postfire regeneration strategies.The primary aim of the study was to know:(i)how fire impact soil seed bank composition and(ii)how much soil seed bank composition differs with standing vegetation after the forest fire.Methods Soil samples were collected from burned and adjoining unburned sites in blocks using three layers down to 9 cm depth immediately after a forest fire and incubated in the net-house for seedling emergence.Same sites were revisited during late monsoon/early autumn season to know the species composition of standing vegetation recovered after a forest fire.Important Findings Soil contained viable seeds of>70 species.The average seed bank density was 8417 and 14217 seeds/m^(2) in the burned and unburned site,respectively.In both sites,it decreased with increasing soil depth.Overall fire had no significant impact on seed density;however,taking individual layers into consideration,fire had a significant impact on seed density only in the uppermost soil layer.The species richness of soil seed bank and standing vegetation was 73 and 100,respectively(with 35 shared species),resulting in a similarity of about 40%.In contrast,>80%species in soil seed bank was found similar between burned and unburned sites.Further,there were no significant differences in species richness of standing vegetation in burned(87 spp.)and unburned(78 spp.)sites.Our results showed that fire had an insignificant impact on soil seed bank composition and restoration potential of a plant species from seeds.The understory herb and shrub plant community’s ability to form a fire-resistant viable soil seed bank and capable to recover in the postfire rainy season,explains how they reduce the risk of recurring fire damage in maintaining their population. 展开更多
关键词 anthropogenic forest fire Garhwal Himalaya seed ecology seed persistence species diversity species richness understory plant community
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部