In this article, the results of researches on the sorting of seeds in the cotton ginning enterprises were described. The main goal of the research work is to theoretically study the technology of separating various im...In this article, the results of researches on the sorting of seeds in the cotton ginning enterprises were described. The main goal of the research work is to theoretically study the technology of separating various impurities and immature seeds from the composition of seeds. As a result, the theoretical basis for increasing the efficiency of the sorting process is created.展开更多
The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain...The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.展开更多
The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive ge...The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive genic male sterile(PTGMS)lines as female parent.Despite huge successes,both systems have intrinsic problems.CMS systems are mainly restricted by the narrow restorer resources that make it difficult to breed superior hybrids,while PTGMS systems are limited by conditional sterility of the male sterile lines that makes the propagation of both PTGMS seeds and hybrid seeds vulnerable to unpredictable climate changes.Recessive nuclear male sterile(NMS)lines insensitive to environmental conditions are widely distributed and are ideal for hybrid rice breeding and production,but the lack of effective ways to propagate the pure NMS lines in a large scale renders it impossible to use them for hybrid rice production.The development of"the third-generation hybrid rice technology"enables efficient propagation of the pure NMS lines in commercial scale.This paper discusses the establishment of"the thirdgeneration hybrid rice technology"and further innovations.This new technology breaks the limitations of CMS and PTGMS systems and will bring a big leap forward in hybrid rice production.展开更多
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineer-ing technologies.These technological advancements have pro-found implications across d...Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineer-ing technologies.These technological advancements have pro-found implications across diverse areas such as regenerative medicine,organ replacement,tissue engineering,cosmetics and more.Thus,recombinant collagen and its preparation methodologies rooted in genetically engineered celis mark pivotal milestones in medical product research.This article pro-vides a comprehensive overview of the current genetic engi-neering technologies and methods used in the production of recombinant collagen,as well as the conventional production process and gquality control detection methods for this material.Furthermore,the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies,envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.展开更多
文摘In this article, the results of researches on the sorting of seeds in the cotton ginning enterprises were described. The main goal of the research work is to theoretically study the technology of separating various impurities and immature seeds from the composition of seeds. As a result, the theoretical basis for increasing the efficiency of the sorting process is created.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.32100257,32172078,31871599 and 31901528)Hunan Science and Technology Innovation Program,China(Grant Nos.2021NK1001,2021NK1003 and 2021NK1011)+1 种基金Key Research and Development,Projects in Hunan Province,China(Grant No.2020NK2054)the Open Programs of the State Key Laboratory of Hybrid Rice,Changsha,China(Grant No.2020KF03)。
文摘The main goals of rice breeding nowadays include increasing yield,improving grain quality,and promoting complete mechanized production to save labor costs.Rice grain shape,specified by three dimensions,including grain length,width and thickness,has a more precise meaning than grain size,contributing to grain appearance quality as well as grain weight and thus yield.Furthermore,the divergence of grain shape characters could be utilized in mechanical seed sorting in hybrid rice breeding systems,which has been succeeded in utilizing heterosis to achieve substantial increase in rice yield in the past decades.Several signaling pathways that regulate rice grain shape have been elucidated,including G protein signaling,ubiquitination-related pathway,mitogen-activated protein kinase signaling,phytohormone biosynthesis and signaling,micro RNA process,and some other transcriptional regulatory pathways and regulators.This review summarized the recent progress on molecular mechanisms underlying rice grain shape determination and the potential of major genes in future breeding applications.
基金supported by the National Natural Science Foundation of China(U1901203)Natural Science Foundation of Guangdong Province(2018B030308008 and 2019A1515110671)+2 种基金Major Program of Guangdong Basic and Applied Research(2019B030302006)Shenzhen Commission on Innovation and Technology Programs(JCYJ20180507181837997)China Postdoctoral Science Foundation(2019M662957)。
文摘The breeding and large-scale application of hybrid rice contribute significantly to the food supply worldwide.Currently,hybrid seed production uses cytoplasmic male sterile(CMS)lines or photoperiod/thermo-sensitive genic male sterile(PTGMS)lines as female parent.Despite huge successes,both systems have intrinsic problems.CMS systems are mainly restricted by the narrow restorer resources that make it difficult to breed superior hybrids,while PTGMS systems are limited by conditional sterility of the male sterile lines that makes the propagation of both PTGMS seeds and hybrid seeds vulnerable to unpredictable climate changes.Recessive nuclear male sterile(NMS)lines insensitive to environmental conditions are widely distributed and are ideal for hybrid rice breeding and production,but the lack of effective ways to propagate the pure NMS lines in a large scale renders it impossible to use them for hybrid rice production.The development of"the third-generation hybrid rice technology"enables efficient propagation of the pure NMS lines in commercial scale.This paper discusses the establishment of"the thirdgeneration hybrid rice technology"and further innovations.This new technology breaks the limitations of CMS and PTGMS systems and will bring a big leap forward in hybrid rice production.
基金supported by the second batch of the China Drug Regulatory Science Action Plan(Research on safety and effectiveness evaluation of novel biomaterials)from National Medical Products Administration(NMPA).
文摘Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineer-ing technologies.These technological advancements have pro-found implications across diverse areas such as regenerative medicine,organ replacement,tissue engineering,cosmetics and more.Thus,recombinant collagen and its preparation methodologies rooted in genetically engineered celis mark pivotal milestones in medical product research.This article pro-vides a comprehensive overview of the current genetic engi-neering technologies and methods used in the production of recombinant collagen,as well as the conventional production process and gquality control detection methods for this material.Furthermore,the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies,envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.