期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Control of Seepage through Earth Dams Based on Pervious Foundation Using Toe Drainage Systems 被引量:1
1
作者 Magdy M. Aboelela 《Journal of Water Resource and Protection》 2016年第12期1158-1174,共18页
Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different ... Many dangerous effects arise from seepage through earth dams based on pervious layer. Therefore, the dam embankment must be provided with seepage control measures to avoid such effects. In the present work, different control methods were used such as flat slopes, toe drainage systems, and a catch drain in the tail water. The hydraulic performance of each control measure was evaluated using the analytical solutions, previously developed, to estimate the seepage quantity (q), the height of seepage surface (h<sub>3</sub>), and the coordinates of the free surface (h<sub>x</sub>). Study was conducted on a physical model for a dam embankment having a top width (b) = 10.0 meter, height (H<sub>d</sub>) = 30.0 meter, and slope factor (m) = 1.5. The obtained results were analyzed and presented in dimensionless charts. Results showed that, the used control measures possess a great effect on the characteristics of seepage through earth dams based on pervious foundations. A comparative study was conducted between the studied toe drainage systems to enable the designers the better choice for design purposes. 展开更多
关键词 Earth Dam Pervious Foundation Pipe Drainage Drainage Banquette Inclined Drainage Catch Drain seepage discharge
下载PDF
Theory of Combined Seepage Applied to Dewatering Systems 被引量:1
2
作者 Magdy M. Aboelela 《Journal of Water Resource and Protection》 2016年第7期743-755,共14页
In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage... In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage followed by an unconfined seepage in the same field, which presents a combined seepage problem. Two equations were developed to analyze the combined seepage underneath a sheet piling wall. Using such equations, both the maximum height of the free surface just behind the sheet piling cofferdam (H<sub>o</sub>) and the quantity of seepage discharge to be pumped out from the construction site (q) can be determined. The main parameters affecting the combined seepage characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site (D), the embedded depth of sheet pile (S), the retained water head (H<sub>1</sub>), the accumulated seepage water depth (H<sub>2</sub>), and the side slope factor of excavation line (M). Study showed that, the above parameters have a great effect on the combined seepage, but with different extents. 展开更多
关键词 Confined seepage Unconfined seepage Combined seepage Sheet Piling Cofferdam seepage discharge Phreatic Surface
下载PDF
Filtration Features in the Base of the Bratsk HPP (Hydroelectric Power Station) Concrete Dam
3
作者 Mark A. Sadovich Tatyana F. Shlyakhtina +2 位作者 Anna M. Kuritsyna Anastasia A. Shkuleva Irina S. Semenova 《Journal of Civil Engineering and Architecture》 2018年第8期543-549,共7页
The design protection of the base of the Bratsk HPP (Hydroelectric Power Station) dam from filtration coming from the water reservoir included the arrangement of several cement-grout curtains and the system of drain... The design protection of the base of the Bratsk HPP (Hydroelectric Power Station) dam from filtration coming from the water reservoir included the arrangement of several cement-grout curtains and the system of drainage holes in the 2nd and 4th columns. During operation, increased hydrostatic back pressure at the base of the dam was found, which indicated the low efficiency of the base design protection. To reduce back pressure B. E. Vedeneev Hydro Technic Institute proposed the device of “advanced” drainage holes from the cement-grout gallery near the upstream face. The implementation of the proposal in a number of sections of the dam has led to a decrease in back pressure, but affected filtration in the drainage system, increasing it significantly. The article examines filtration features of “advanced” drainage holes and their dependence on the severity of winters. The spread of the practice of “advanced” drainage in other sections of the dam requires caution and further investigations of the nature of filtration. 展开更多
关键词 Cement-grout curtain base drainage back pressure “advanced” drainage BOREHOLE seepage discharge filtration mode.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部