期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Laboratory simulation of CO_(2) immiscible gas flooding and characterization of seepage resistance
1
作者 Jie CHI Binshan JU +5 位作者 Wenbin CHEN Mengfei ZHANG Rui ZHANG Anqi MIAO Dayan WANG Fengyun CUI 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期797-817,共21页
CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepa... CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepage experiments are field tests in actual reservoirs or simulations with reservoir numerical simulators. Although targeted, the promotion is poor. For the characterization of seepage resistance, there are few studies on the variation law of seepage resistance caused by the combined action in the reservoir. To solve this problem, based on the mechanism of CO_(2), a physical simulation experiment device for CO_(2) non-miscible flooding production manner is designed. The device adopts two displacement schemes, gas-displacing water and gas-displacing oil, it mainly studies the immiscible gas flooding mechanism and oil displacement characteristics based on factors such as formation dip angle, gas injection position, and gas injection rate. It can provide a more accurate development simulation for the actual field application. By studying the variation law of crude oil viscosity and start-up pressure gradient, the characterization method of seepage resistance gradient affected by these two factors in the seepage process is proposed. The field test is carried out for the natural core of the S oilfield, and the seepage resistance is described more accurately. The results show that the advancing front of the gas drive is an arc, and the advancing speed of the gas drive oil front is slower than that of gas drive water;the greater the dip angle, the higher the displacement efficiency;the higher the gas injection rate is, the higher the early recovery rate is, and the lower the later recovery rate is;oil displacement efficiency is lower than water displacement efficiency;taking the actual core of S oilfield as an example, the mathematical representation method of core start-up pressure gradient in low permeability reservoir is established. 展开更多
关键词 laboratory_simulation viscosity starting pressure gradient CO immiscible flooding characterization of seepage resistance
原文传递
Analysis of the Properties and Anti-Seepage Mechanism of PBFC Slurry in Landfill
2
作者 Guozhong Dai Jia Zhu +2 位作者 Guicai Shi Yanmin Sheng Shujin Li 《Structural Durability & Health Monitoring》 EI 2017年第2期169-190,共22页
As the landfill leachate has strong pollution on the underground water,surface water and soil.This paper develops the formula of impervious slurry with low permeability,good durability,strong adsorption and retardant ... As the landfill leachate has strong pollution on the underground water,surface water and soil.This paper develops the formula of impervious slurry with low permeability,good durability,strong adsorption and retardant based on the bentonite which is modified by polyvinyl alcohol.Through the simulation experiment,the optimum formula of polyvinyl alcohol is 0.2%.Its osmotic coefficient for 28 days is 0.53×10^-8~1.86×10^-8 cm/s and compressive strength is 0.5~1.5 MPa as well.This paper study on the retardant rule of the consolidation of slurry against the pollution in the leachate by self-made percolation instrument.The experiment shows that the retardant rate of the consolidation against inorganic pollutants and organic pollutants is over 85% and the retardant rate against heavy metal ion such as Hg and Pb is above 99%.The slurry has the characteristics of low permeability,high retardant against pollution,good durability and plasticity,no chemical additives,no pollution,wide source of raw materials and good economy which determine it can be used to new landfill or existing landfill,building foundation pit and water conservancy project. 展开更多
关键词 Waste landfill anti-seepage slurry seepage resistance adsorption property corrosion resistance durability mechanical property
下载PDF
Production characteristics and displacement mechanisms of infilling polymer-surfactant-preformed particle gel flooding in post-polymer flooding reservoirs:A review of practice in Ng3 block of Gudao Oilfield
3
作者 Zhi-Bin An Kang Zhou +1 位作者 De-Jun Wu Jian Hou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2354-2371,共18页
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic... The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future. 展开更多
关键词 Infilling polymer-surfactant-PPG flooding Production characteristics Displacement mechanisms Dimensionless seepage resistance Water absorption profile
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部