期刊文献+
共找到6,329篇文章
< 1 2 250 >
每页显示 20 50 100
Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system
1
作者 Jinghu TANG Chaofeng LI +1 位作者 Jin ZHOU Zhiwei WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期873-890,共18页
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a... The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state. 展开更多
关键词 magnetic levitation coupling system self-excited vibration mechanical interface vibration frequency
下载PDF
Mechanical behavior and damage constitutive model of sandstone under hydro-mechanical (H-M) coupling
2
作者 Tao Tan Chunyang Zhang +1 位作者 Yanlin Zhao Xiaoshuang Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期837-853,共17页
Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately ... Underground engineering often passes through water-rich fractured rock masses, which are prone to fracture and instability under the long-term coupling of in-situ stress field and pore water(P-W) pressure, ultimately threatening the stability of underground structures. In order to explore the mechanical properties of rocks under H-M coupling, the corresponding damage constitutive(D-C) model has become the focus of attention. Considering the inadequacy of the current research on rock strength parameters,energy evolution characteristics and D-C model under H-M coupling, the mechanical properties of typical sandstone samples are discussed based on laboratory tests. The results show that the variation of characteristic stresses of sandstone under H-M coupling conforms to the normalized attenuation equation and Mohr-Coulomb(M-C) criterion. The P-W pressure mechanism of sandstone exhibits a dynamic change from softening effect to H-M fracturing effect. The closure stress is mainly provided by cohesive strength, while the initiation stress, damage stress, and peak stress are jointly dominated by cohesive strength and friction strength. In addition, residual stress is attributed to the friction strength formed by the bite of the fracture surface. Subsequently, the energy evolution characteristics of sandstone under H-M coupling were studied, and it was found that P-W pressure weakened the energy storage capacity and energy dissipation capacity of sandstone, and H-M fracturing was an important factor in reducing its energy storage efficiency. Finally, combined with energy dissipation theory and statistical damage theory, two types of D-C models considering P-W pressure are proposed accordingly, and the model parameters can be determined by four methods. The application results indicate that the proposed and modified D-C models have high reliability, and can characterize the mechanical behavior of sandstone under H-M coupling, overcome the inconvenience of existing D-C models due to excessive mechanical parameters,and can be applied to the full-range stress–strain process. The results are conducive to revealing the deformation and damage mechanisms of rocks under H-M coupling, and can provide theoretical guidance for related engineering problems. 展开更多
关键词 H-M coupling Water-saturated sandstone mechanical mechanism Energy evolution D-C model
下载PDF
Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints
3
作者 Xue Cai Caiping Zhang +3 位作者 Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期364-379,I0009,共17页
The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coup... The safety and durability of lithium-ion batteries under mechanical constraints depend significantly on electrochemical,thermal,and mechanical fields in applications.Characterizing and quantifying the multi-field coupling behaviors requires interdisciplinary efforts.Here,we design experiments under mechanical constraints and introduce an in-situ analytical framework to clarify the complex interaction mechanisms and coupling degrees among multi-physics fields.The proposed analytical framework integrates the parameterization of equivalent models,in-situ mechanical analysis,and quantitative assessment of coupling behavior.The results indicate that the significant impact of pressure on impedance at low temperatures results from the diffusion-controlled step,enhancing kinetics when external pressure,like 180 to 240 k Pa at 10℃,is applied.The diversity in control steps for the electrochemical reaction accounts for the varying impact of pressure on battery performance across different temperatures.The thermal expansion rate suggests that the swelling force varies by less than 1.60%per unit of elevated temperature during the lithiation process.By introducing a composite metric,we quantify the coupling correlation and intensity between characteristic parameters and physical fields,uncovering the highest coupling degree in electrochemical-thermal fields.These results underscore the potential of analytical approaches in revealing the mechanisms of interaction among multi-fields,with the goal of enhancing battery performance and advancing battery management. 展开更多
关键词 Lithium-ion battery Muti-field coupling mechanical constraints Interaction mechanisms Quantitative analysis
下载PDF
Mechanical behaviours of bedded sandstone under hydromechanical coupling
4
作者 Junwen Zhang Zhixiang Song +7 位作者 Lichao Zhang Shaokang Wu Shanyong Wang Yang Zhang Xukai Dong Jinxin Wang Yanbo Han Baohua Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1245-1261,共17页
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be... The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines. 展开更多
关键词 Hydromechanical coupling Bedded sandstones mechanical behaviour Bedding effect Failure mechanism
下载PDF
Type Synthesis of 1T2R Parallel Mechanisms Using Structure Coupling-Reducing Method 被引量:11
5
作者 Haitao Liu Ke Xu +2 位作者 Huiping Shen Xianlei Shan Tingli Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期70-79,共10页
Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of intere... Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest.Based on this purpose,this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism.With the aid of the theory of mechanism topology,the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented,which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism.Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed,resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree.One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics.The process of type synthesis is in the order of permutation and combination;therefore,there are no omissions.This method is also appli cable to other configurations,and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method. 展开更多
关键词 TYPE synthesis STRUCTURE coupling-reducing coupling degree Parallel mechanism
下载PDF
Coupling Mechanism of Rural Settlements and Mountain Disasters in the Upper Reaches of Min River 被引量:4
6
作者 DING Ming-tao CHENG Zun-lan WANG Qing 《Journal of Mountain Science》 SCIE CSCD 2014年第1期66-72,共7页
Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly inf... Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly influenced by the specific geographical environment and ecological conditions of mountains.Based on field investigation,this paper uses physical,geographical,and ecological theories to make a comprehensive study of rural settlements and mountain disasters in the upper Min River,which is an ecologically fragile area with high-frequency disasters(collapse,landslide,debris flow,etc.) and a minority inhabit district.By applying these modern scientific theories,this paper attempts to shed some light on the relationship between rural settlements and mountain disasters.Consequently,an in-depth understanding of this relationship was achieved as follows:(1) Rural settlements and mountain disasters are mainly distributed in the intercepted flows of water and soil; and both quantity and quality of arable lands in mountains are important indicators of these flows.(2) The Small Watershed Management Project is a complex system of rural settlements and mountain disasters that interacts with and constrains the ecological system.By this project,the human survival will be better guaranteed.Being fundamental for the ecological reconstruction,the coupling mechanism of rural settlements and mountain disasters is not only an engine to promote harmonious development between human and nature,but also a bridge to link them. 展开更多
关键词 The UPPER reaches of Min River MOUNTAIN DISASTER RURAL SETTLEMENT coupling mechanism Remote sensing
下载PDF
Numerical simulation of compound media coupling mechanism of deep mining overburden strata 被引量:4
7
作者 YANG Fan, CHEN Shuang School of Geometrics, Liaoning Technical University, Fuxin 123000, China 《中国有色金属学会会刊:英文版》 CSCD 2011年第S3期631-636,共6页
Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum ... Aiming at the regularity of deep mining strata movement, through the application of plate theory and discrete medium theory in establishing the coupling model of the deep mining strata composite medium, the continuum media and the non-continuum media were coupled into the compound media giant system, and the stress of compound layer and strain coupling relationship were established. The accuracy of forecasting surface subsidence in deep mining conditions was improved. The deep mining was simulated through 3-D numerical value by the FLAC3D finite difference software, and the coupling relationship and coupling layer in the strata composite layer were analyzed. The results show that, under the deep mining condition, the coupling zone is in the position of coal seam roof with the thickness of 15-20 times, on which, the stress-strain has much difference on the coupling zone. Considering interlayer effect of coupling zone can improve the prediction precision of surface subsidence. 展开更多
关键词 deep MINING NUMERICAL simulation coupling mechanism
下载PDF
A Regional-Scale Method of Forecasting Debris Flow Events Based on Water-Soil Coupling Mechanism 被引量:8
8
作者 ZHANG Shao-jie WEI Fang-qiang +2 位作者 LIU Dun-long YANG Hong-juan JIANG Yu-hong 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1531-1542,共12页
A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was a... A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods. 展开更多
关键词 Debris flow Forecasting Water-soil coupling mechanism WATERSHED
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
9
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 Mining-induced mechanical behavior Coal deformation SEEPAGE coupling test
下载PDF
Mechanics analysis of a wheelchair robot with wheel-track coupling mechanism 被引量:3
10
作者 李敬一 白阳 +2 位作者 靳飞 王冬晓 高学山 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期301-307,共7页
A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities ... A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design. 展开更多
关键词 wheelchair robot wheel/track coupling mechanism centroid projection method sta-bility margin dynamic analysis
下载PDF
Hydro-mechanical coupling mechanism on joint of clay core-wall and concrete cut-off wall 被引量:3
11
作者 罗玉龙 詹美礼 +1 位作者 盛金昌 吴强 《Journal of Central South University》 SCIE EI CAS 2013年第9期2578-2585,共8页
The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between c... The joint of clay core-wall and concrete cut-off wall is one of the weakest parts in high earth and rockftll dams.A kind of highly plastic clay is always fixed on the joint to fit the large shear deformation between clay core-wall and concrete cut-offwall,so the hydro-mechanical coupling mechanisms on the joint under high stress,high hydraulic gradient,and large shear deformation are of great importance for the evaluation of dam safety.The hydro-mechanical coupling characteristics of the joint of the highly plastic clay and the concrete cut-off wall in a high earth and rockfill dam in China were studied by using a newly designed soil-structure contact erosion apparatus.The experimental results indicate that:1) Shear failure on the joint is due to the hydro-mechanical coupling effect of stress and seepage failure.The seepage failure will induce the final shear failure when the ratio of deviatoric stress to confining pressure is within 1.0-1.2; 2) A negative exponential permeability empirical model for the joint denoted by a newly defined principal stress function,which considers the coupling effect of confining pressure and axial pressure on the permeability,is established based on hydro-mechanical coupling experiments.3) The variation of the settlement before and after seepage failure is very different.The settlement before seepage failure changes very slowly,while it increases significantly after the seepage failure.4) The stress-strain relationship is of a strain softening type.5) Flow along the joint still follows Darcian flow rule.The results will provide an important theoretical basis for the further evaluation on the safety of the high earth and rockfill dam. 展开更多
关键词 high earth and rockfill dam soil/structure interface hydro-mechanical coupling mechanism seepage failure shear failure
下载PDF
Coupling Mechanism of Saturated Concrete Subjected to Simultaneous Fatigue Loading and Freeze-thaw Cycles 被引量:1
12
作者 QIAO Yunfeng SUN Wei +1 位作者 JIANG Jinyang PAN Dongfang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1121-1128,共8页
The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperat... The coupling mechanism of saturated concrete subjected to simultaneous 4-point fatigue loading and freeze-thaw cycles was, for the first time, experimentally studied by strain technology. The coupling strain, temperature strain and fatigue strain of concrete specimens were measured at the same time from one sample with stain analysis method and the relationship among these three kinds of strains was studied by fitting data to present coupling mechanism at macro level. The results showed that there was no interaction between fatigue strain and temperature strain and the coupling strain could be written by linear superposition of temperature strain and fatigue strain. 展开更多
关键词 coupling mechanism fatigue loading freeze-thaw cycles strain saturated concrete
下载PDF
Coupling dynamic equations of motor-driven elastic linkage mechanism with links fabricated from three-dimensional braided composite materials 被引量:2
13
作者 蔡敢为 王湘 +3 位作者 王汝贵 李兆军 张晓斌 常平平 《Journal of Central South University of Technology》 2005年第2期171-175,共5页
A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromag... A motor-driven linkage system with links fabricated from 3-dimensional braided composite materials was studied. A group of coupling dynamic equations of the system, including composite materials parameters, electromagnetism parameters of the motor and structural parameters of the link mechanism, were established by finite element method. Based on the air-gap field of non-uniform airspace of three-phase alternating current motor caused by the vibration eccentricity of rotor, the relation of electromechanical coupling at the actual running state was analyzed. And the motor element, which defines the transverse vibration and torsional vibration of the motor as its nodal displacement, was established. Then, based on the damping element model and the expression of energy dissipation of the 3-dimentional braided composite materials, the damping matrix of the system was established by calculating each order modal damping of the mechanism. 展开更多
关键词 elastic mechanism finite element composite material electromechanical coupling dynamic analysis
下载PDF
Synchronization in multilayer networks through different coupling mechanisms 被引量:1
14
作者 Xiang Ling Bo Hua +4 位作者 Ning Guo Kong-Jin Zhu Jia-Jia Chen Chao-Yun Wu Qing-Yi Hao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期772-778,共7页
In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investig... In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investigate synchronization phenomena in multilayer networks with nonidentical topological structures based on three specific coupling mechanisms:assortative,disassortative,and anti-assortative couplings.We find rich and complex synchronous dynamic phenomena in coupled networks.We also study the behavior of effective frequencies for layers I and II to understand the underlying microscopic dynamics occurring under the three different coupling mechanisms.In particular,the coupling mechanisms proposed here have strong robustness and effectiveness and can produce abundant synchronization phenomena in coupled networks. 展开更多
关键词 coupling mechanisms synchronization phenomena coupled networks
下载PDF
The coupling mechanism between the suitable space and rural settlements considering the effect of mountain hazards in the upper Minjiang River basin 被引量:1
15
作者 LIU Ying DENG Wei PENG Li 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2774-2783,共10页
Some settlements were located in unsuitable regions due to limited land resources in mountainous areas,some settlements were even even constructed in areas prone to geological hazards in Southwest China.Therefore,it w... Some settlements were located in unsuitable regions due to limited land resources in mountainous areas,some settlements were even even constructed in areas prone to geological hazards in Southwest China.Therefore,it was important to evaluate the spatial appropriateness of a region and determine the areas that were unsuitable for settlements,and then find out the settlements located in unsuitable regions.It will assist in decision making associated with the relocation of settlements.Furthermore,it will be the key to ensure the safety of inhabitants and promoting sustainable development in mountainous areas.This study explored the coupling mechanism between suitable space and rural settlements in the upper Minjiang River basin,which is an ecologically fragile area with high-frequency of natural hazards.Firstly,we identified relief degree of land surface(RDLS),elevation,and disaster risk as the limiting factors.Then,by determining the thresholds of these limiting factors,we recognized the suitable areas for inhabitation in the upper Minjiang River basin with GIS.Finally,using the distribution map of rural settlements and that of suitable space,the distribution of rural settlements located at unsuitable area was obtained by coupling relationship analysis.Consequently,an in-depth understanding of this relationship was achieved as follows:(1)The suitable space of the upper Minjiang River basin is 13.7 thousand km2,accounting for 54.9%of the total land space;(2)There were 196 settlements located in the unsuitable area,the total area of these settlements was 125.27 km2,and there were 68000 people in these settlements,accounting for 17.65%of the total population;(3)There were 65 settlements located near mountain hazard areas,accounting for 4.9%of the total.These findings suggest that it was necessary to carefully investigate settlements with risks and develop targeted relocation policies to help find the most effective way of using land safely and to good effect.The details are as follows:(1)Fully consider the safety of residents:For the 196 settlements distributed in the unsuitable region,the government should undertake a point-by-point survey and classify these settlements into different categories for relocation;(2)For the 65 settlements closely related with mountain hazards,professional geological prospecting teams should be organized to conduct a field survey at each point;(3)Besides considering the safety of residents during the relocation process,it is necessary to pay more attention to the cultural customs of inhabitants and livelihood sustainability. 展开更多
关键词 coupling mechanism Sustainable Development Remote Sensing China
下载PDF
On the Large Scale Spatial Heterogeneity of Great Shallow Earthquakes and Plate Coupling Mechanism in Chinese Mainland and Its Adjacent Areas 被引量:1
16
作者 Fu Zhengxiang and Jiang LixinCenter for Analysis and Prediction,State Seismological Bureau,Beijing 100036,China 《Earthquake Research in China》 1997年第3期7-15,共9页
Research on the large scale spatial heterogeneity of great intraplate shallow earthquakes on the Chinese mainland and adjacent areas discussed in this paper shows that(1)there are four main high seismicity areas:the N... Research on the large scale spatial heterogeneity of great intraplate shallow earthquakes on the Chinese mainland and adjacent areas discussed in this paper shows that(1)there are four main high seismicity areas:the North China seismic area in the eastern part of China(30°-42°N),the Southeastern Coast seismic area in the eastern part of China(19°-25°N),the North-South seismic area in the western part of China and its adjacent areas(Burma-China-Mongolia),and the Central Asian seismic area in the western part of China and its adjacent areas(Pamir-Tianshan Mountains-Baikal);(2)the four intraplate seismic areas that are approximately perpendicular to those sections of the Eurasia plate boundary that surrounds the Chinese mainland and its adjacent areas,where the Eurasia plate has a strong seismic coupling with the North America-Pacific Ocean-Philippine Sea plate and the India plate; and(3)the large scale spatial heterogeneity of intraplate seismicity in China and its adjacent areas that might be 展开更多
关键词 HETEROGENEOUS SEISMICITY coupling mechanism Chinese MAINLAND
下载PDF
Analysis of the Oscillating Mechanism of an Aerial Work Platform Based on ADAMS Hydraulic-Mechanical Coupling Simulation 被引量:2
17
作者 GU De-jun TENG Ru-min +2 位作者 GAO Shun-de BAI Ri GAO Kai-qing 《International Journal of Plant Engineering and Management》 2008年第3期154-158,共5页
Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The si... Rigid model of the aerial work platform and hydraulic model of the oscillating mechanism were established with ADAMS. The simulation of two parameters, cy-linder force and oil chamber pressure, was carried out. The simulation result is useful to the design of the oscillating mechanism. 展开更多
关键词 aerial work platform oscillating mechanism hydraulic-mechanical coupling simulation
下载PDF
Formation Mechanism in Alloy Steel Rolling Process Using Thermo-mechanical Coupling Method
18
作者 杨理诚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期422-426,共5页
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe... Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters. 展开更多
关键词 thermo-mechanical coupling temperature field deformation mechanism hot rolling process
下载PDF
Theoretical Study on the Mechanism of Sonogashira Coupling Reaction 被引量:1
19
作者 陈丽萍 洪三国 候豪情 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第11期1404-1411,共8页
The mechanism of palladium-catalyzed Sonogashira cross-coupling reaction has been studied theoretically by DFT (density functional theory) calculations. The model system studied consists of Pd(PH3)2 as the startin... The mechanism of palladium-catalyzed Sonogashira cross-coupling reaction has been studied theoretically by DFT (density functional theory) calculations. The model system studied consists of Pd(PH3)2 as the starting catalyst complex, phenyl bromide as the substrate and acetylene as the terminal alkyne, without regarding to the co-catalyst and base. Mechanistically and energetically plausible catalytic cycles for the cross-coupling have been identified. The DFT analysis shows that the catalytic cycle occurs in three stages: oxidative addition of phenyl bromide to the palladium center, alkynylation of palladium(Ⅱ) intermediate, and reductive elimination to phenylacetylene. In the oxidative addition, the neutral and anionic pathways have been investigated, which could both give rise to cis-configured palladium(Ⅱ) diphosphine intermediate. Starting from the palladium(Ⅱ) diphosphine intermediate, the only identifiable pathway in alkynylation involves the dissociation of Br group and the formation of square-planar palladium(Ⅱ) intermediate, in which the phenyl and alkynyl groups are oriented cis to each other. Due to the close proximity of phenyl and alkynyl groups, the reductive elimination of phenylacetylene proceeds smoothly. 展开更多
关键词 PALLADIUM Sonogashira cross-coupling reaction DFT calculations mechanism
下载PDF
Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
20
作者 Ming-Hao Yu Zhe Wang +2 位作者 Ze-Yang Qiu Bo Lv Bo-Rui Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期390-400,共11页
We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numeri... We take the established inductively coupled plasma(ICP) wind tunnel as a research object to investigate the thermal protection system of re-entry vehicles. A 1.2-MW high power ICP wind tunnel is studied through numerical simulation and experimental validation. The distribution characteristics and interaction mechanism of the flow field and electromagnetic field of the ICP wind tunnel are investigated using the multi-field coupling method of flow, electromagnetic, chemical, and thermodynamic field. The accuracy of the numerical simulation is validated by comparing the experimental results with the simulation results. Thereafter, the wind tunnel pressure, air velocity, electron density, Joule heating rate, Lorentz force, and electric field intensity obtained using the simulation are analyzed and discussed. The results indicate that for the 1.2-MW ICP wind tunnel, the maximum values of temperature, pressure, electron number density, and other parameters are observed during coil heating. The influence of the radial Lorentz force on the momentum transfer is stronger than that of the axial Lorentz force. The electron number density at the central axis and the amplitude and position of the Joule heating rate are affected by the radial Lorentz force. Moreover, the plasma in the wind tunnel is constantly in the subsonic flow state, and a strong eddy flow is easily generated at the inlet of the wind tunnel. 展开更多
关键词 inductively coupled plasma multiphysics field coupling mechanism simulation and experiment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部