Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate cha...Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring(GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0–15 L min^(-1), and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m^3 during the measurement period, and the gas flow rate ranged from 22 to 72 Lh^(-1), depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.展开更多
Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere,including methane,which is significant to the global carbon cycling and climate change.Four...Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere,including methane,which is significant to the global carbon cycling and climate change.Four hydrocarbon seep areas,the Lingtou Promontory,the Yinggehai Rivulet mouth,the Yazhou Bay and the Nanshan Promontory,occurring in the Yinggehai Basin delineate a near-shore gas bubble zone.The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory.The gas composition of the venting bubbles is mainly composed of CO_2,CH_4,N_2 and O_2,with minor amounts of non-methane hydrocarbons.The difference in the bubbles' composition is a possible consequence of gas exchange during bubble ascent.The seepage gases from the seafloor are characterized by a high CO_2 content(67.35%) and relatively positive δ^(13)C_(V_PDB) values(-0.49×10^(-3)-0.86×10^(-3)),indicating that the CO_2 is of inorganic origin.The relatively low CH_4 content(23%) and their negative δ^(13)C_(V-PDB) values(-34.43×10^(-3)--37.53×10^(-3)) and high ratios of C_1 content to C_(1-5) one(0.98-0.99)as well point to thermogenic gases.The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No.1 fault,suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin.展开更多
A new methodology was developed to identify cold seeps and structured benthic communities associated, which was applied for the first time in the offshore southern Colombian Caribbean. The integral method consists on ...A new methodology was developed to identify cold seeps and structured benthic communities associated, which was applied for the first time in the offshore southern Colombian Caribbean. The integral method consists on a new processing of double-coverage (200%) high-resolution backscatter data combined with bathymetric information;validation was done correlating identified gas plumes, seabed cores and drift camera surveys. Results showed that the elimination of artefacts and the increased signal of the backscatter data allowed accurate plotting of seep boundaries and categorization of seeps into an activity catalogue, with more than 200 seeps identified. Most seeps have chemosynthetic communities associated and data analysis from a previous survey showed two ridges with hard ground as the only possible areas for the development the of deep- water corals. Seep results were compared with designated Areas of Significance for Biodiversity (ASB) identifying seeps both within and outside the ASBs, and showing that the presence of seeps and chemosynthetic communities associated were driven more by geological processes than for big-scale seabed morphology, since they were found in both plains and ridges. This methodology allows an accurate seabed map of structured benthic communities, which may work as a precise geo-hazard map to ensure the oil & gas industry can avoid these areas of shallow gas for further developments, and as a map of deep-water structured benthic communities with environmental significance.展开更多
For our ancestors, oil seeps were both a fascination and a resource but as the planet's reserves of high quality low density oil becomes increasingly depleted, so there is now a renewed interest in heavier,biodegr...For our ancestors, oil seeps were both a fascination and a resource but as the planet's reserves of high quality low density oil becomes increasingly depleted, so there is now a renewed interest in heavier,biodegraded oils such as those encountered in terrestrial seeps. One such seep is Pitch Lake in the Caribbean island of Trinidad, which is the largest natural deposit of asphalt in the world. At the northern end of the Caribbean, oil emerges along a tectonic contact on the island on Cuba. The sources of the oils from these seeps are relatively recent and both are subject to intense weathering due to the tropical conditions. When analysed by gas chromatography(GC) both oils appear as unresolved complex mixtures(UCM) and show a very high degree of biodegradation thus presenting an analytical challenge. In this case study, these two Caribbean seep oils were analysed by comprehensive two dimensional GC with time of flight mass spectrometry(GC×GC-TOFMS) to expose many thousands of the individual compounds that comprise the UCM. The high chromatographic resolution of the GC×GC-TOFMS produced good quality mass spectra allowing many compounds including molecular fossil ‘biomarkers' to be identified. Compound classes included diamondoid hydrocarbons, demethylated hopanes and secohopanes, mono-and tri-aromatic steroids. D-ring aromatised structures of the 8,14-seco-hopanes,including demethylated forms were present in both oils but further demethylation, probably at position C-25 during biodegradation, was only observed in the Pitch Lake oil. Many polycyclic aromatic hydrocarbons(PAHs) were absent although the fungal-derived pentacyclic PAH perylene was present in both oils. The presence of the angiosperm biomarker lupane in the Pitch Lake oil constrained the age to the Late Cretaceous. The higher degree of biodegradation observed in the Cuban oil was likely due to relatively slow anaerobic processes whereas oil within Pitch Lake was probably subject to additional more rapid aerobic metabolism within the lake.展开更多
To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of t...To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area.The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents,but the water depth where these bubble plumes disappear(630–650 m below the sea level)(mbsl)is very close to the upper limit of the gas hydrate stability zone in the water column(620 m below the sea level),as calculated from the CTD data within the study area,supporting the“hydrate skin”hypothesis.Gas chimneys directly below the bottom simulating reflectors,found at most sites,are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone.The fracture network on the top of the basement uplift may be heavily gas-charged,which accounts for the chimney with several kilometers in diameter(beneath Plumes B and C).The much smaller gas chimney(beneath Plume D)may stem from gas saturated localized strong permeability zone.High-resolution seismic profiles reveal pipe-like structures,characterized by stacked localized amplitude anomalies,just beneath all the plumes,which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor,feeding the gas plumes.The differences between these pipe-like structures indicate the dynamic process of gas seepage,which may be controlled by the build-up and dissipation of pore pressure.The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney.Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.展开更多
This work reports on a preliminary taxonomic study of epibenthic macroinvertebrates collected or observed by underwater video at the Haima cold seeps and in adjacent deep-sea habitats,including a mud volcano feld and ...This work reports on a preliminary taxonomic study of epibenthic macroinvertebrates collected or observed by underwater video at the Haima cold seeps and in adjacent deep-sea habitats,including a mud volcano feld and Ganquan Plateau,during an expedition in the South China Sea by the Chinese-manned submersible Shenhai Yongshi in May 2018.A total of 41 species belonging to 6 phyla were identifed,among which 34 species were collected from the Haima cold seeps.Mollusks and crustaceans that are specialized in reducing habitats were predominant in biotopes of the Haima cold seeps,whereas sponges and cold-water corals and their commensals were prominent in communities of the mud volcano feld and the slopes of Ganquan Plateau.The distribution and faunal composition of each taxonomic group are discussed.展开更多
Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated...Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.展开更多
The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four...The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.展开更多
Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of the...Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel(Gigantidas haimaensis) as a model, we explored this hostbacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing(SOX)multienzyme complex with the acquisition of sox B from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham(CBB)cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway(Ru MP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine,isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.展开更多
A new prenylated indole alkaloid 11,17-epi-mangrovamide A(1),a new natural occurring product,1,7-dihydroxy-6-methyl-8-hydroxymethyl-xanthone(2),two known alkaloids,mangrovamide A(3)and mangrovamide G(4),and four known...A new prenylated indole alkaloid 11,17-epi-mangrovamide A(1),a new natural occurring product,1,7-dihydroxy-6-methyl-8-hydroxymethyl-xanthone(2),two known alkaloids,mangrovamide A(3)and mangrovamide G(4),and four known polyketide derivatives(5–8)were isolated and identified from the cold-seep sediment derived fungal strain Talaromyces funiculosus SD-523.Their structures were elucidated by combination of nuclear magnetic resonance(NMR),high resolution electrospray ionization mass spectroscopy(HRESIMS),quantum chemical electronic circular dichroism(ECD),and DP4+probability analysis as well as by comparison of the data with literature reports.All isolated compounds were tested for antibacterial activities.展开更多
Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the l...Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the leaked gases frequently exhibit a flame-like structure.We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume.Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data,by which synthetic seismic sections in different dominant frequencies could be numerically simulated,seismic attribute sections(e.g.,instantaneous amplitude,instantaneous frequency,and instantaneous phase)extracted,and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations.The instantaneous amplitude is positively correlated with bubble volume fraction,while the instantaneous frequency and bubble volume fraction are negatively correlated.In addition,information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction.As the bubble volume fraction increases,the information entropy of the instantaneous phase increases rapidly at the beginning,followed by a slight upward trend,and finally stabilizes.Therefore,under optimal noise conditions,the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes.展开更多
Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in ...Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.展开更多
基金provided by the National Scientific Foundation of China (Nos. 41676046 and 41306045)the Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. SIDSSE-201208 and SQ201110)+1 种基金the 'Hundred Talents Program' of the Chinese Academy of Sciencesfinancial support from China Scholarship Council
文摘Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring(GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0–15 L min^(-1), and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m^3 during the measurement period, and the gas flow rate ranged from 22 to 72 Lh^(-1), depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.
基金The National Natural Science Foundation of China under contract Nos 41306045,91228206,41422602 and 41676046the Hundred Talents Program of the Chinese Academy of Sciences
文摘Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere,including methane,which is significant to the global carbon cycling and climate change.Four hydrocarbon seep areas,the Lingtou Promontory,the Yinggehai Rivulet mouth,the Yazhou Bay and the Nanshan Promontory,occurring in the Yinggehai Basin delineate a near-shore gas bubble zone.The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory.The gas composition of the venting bubbles is mainly composed of CO_2,CH_4,N_2 and O_2,with minor amounts of non-methane hydrocarbons.The difference in the bubbles' composition is a possible consequence of gas exchange during bubble ascent.The seepage gases from the seafloor are characterized by a high CO_2 content(67.35%) and relatively positive δ^(13)C_(V_PDB) values(-0.49×10^(-3)-0.86×10^(-3)),indicating that the CO_2 is of inorganic origin.The relatively low CH_4 content(23%) and their negative δ^(13)C_(V-PDB) values(-34.43×10^(-3)--37.53×10^(-3)) and high ratios of C_1 content to C_(1-5) one(0.98-0.99)as well point to thermogenic gases.The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No.1 fault,suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin.
文摘A new methodology was developed to identify cold seeps and structured benthic communities associated, which was applied for the first time in the offshore southern Colombian Caribbean. The integral method consists on a new processing of double-coverage (200%) high-resolution backscatter data combined with bathymetric information;validation was done correlating identified gas plumes, seabed cores and drift camera surveys. Results showed that the elimination of artefacts and the increased signal of the backscatter data allowed accurate plotting of seep boundaries and categorization of seeps into an activity catalogue, with more than 200 seeps identified. Most seeps have chemosynthetic communities associated and data analysis from a previous survey showed two ridges with hard ground as the only possible areas for the development the of deep- water corals. Seep results were compared with designated Areas of Significance for Biodiversity (ASB) identifying seeps both within and outside the ASBs, and showing that the presence of seeps and chemosynthetic communities associated were driven more by geological processes than for big-scale seabed morphology, since they were found in both plains and ridges. This methodology allows an accurate seabed map of structured benthic communities, which may work as a precise geo-hazard map to ensure the oil & gas industry can avoid these areas of shallow gas for further developments, and as a map of deep-water structured benthic communities with environmental significance.
文摘For our ancestors, oil seeps were both a fascination and a resource but as the planet's reserves of high quality low density oil becomes increasingly depleted, so there is now a renewed interest in heavier,biodegraded oils such as those encountered in terrestrial seeps. One such seep is Pitch Lake in the Caribbean island of Trinidad, which is the largest natural deposit of asphalt in the world. At the northern end of the Caribbean, oil emerges along a tectonic contact on the island on Cuba. The sources of the oils from these seeps are relatively recent and both are subject to intense weathering due to the tropical conditions. When analysed by gas chromatography(GC) both oils appear as unresolved complex mixtures(UCM) and show a very high degree of biodegradation thus presenting an analytical challenge. In this case study, these two Caribbean seep oils were analysed by comprehensive two dimensional GC with time of flight mass spectrometry(GC×GC-TOFMS) to expose many thousands of the individual compounds that comprise the UCM. The high chromatographic resolution of the GC×GC-TOFMS produced good quality mass spectra allowing many compounds including molecular fossil ‘biomarkers' to be identified. Compound classes included diamondoid hydrocarbons, demethylated hopanes and secohopanes, mono-and tri-aromatic steroids. D-ring aromatised structures of the 8,14-seco-hopanes,including demethylated forms were present in both oils but further demethylation, probably at position C-25 during biodegradation, was only observed in the Pitch Lake oil. Many polycyclic aromatic hydrocarbons(PAHs) were absent although the fungal-derived pentacyclic PAH perylene was present in both oils. The presence of the angiosperm biomarker lupane in the Pitch Lake oil constrained the age to the Late Cretaceous. The higher degree of biodegradation observed in the Cuban oil was likely due to relatively slow anaerobic processes whereas oil within Pitch Lake was probably subject to additional more rapid aerobic metabolism within the lake.
基金The Shandong Province “Taishan Scholar” Construction Projectthe fund of the Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract No.MMRKF201810+1 种基金the National Natural Science Foundation of China under contract No.41606077the National Key R&D Program of China under contract No.2018YFC0310000.
文摘To confirm the seabed fluid flow at the Haima cold seeps,an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area.The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents,but the water depth where these bubble plumes disappear(630–650 m below the sea level)(mbsl)is very close to the upper limit of the gas hydrate stability zone in the water column(620 m below the sea level),as calculated from the CTD data within the study area,supporting the“hydrate skin”hypothesis.Gas chimneys directly below the bottom simulating reflectors,found at most sites,are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone.The fracture network on the top of the basement uplift may be heavily gas-charged,which accounts for the chimney with several kilometers in diameter(beneath Plumes B and C).The much smaller gas chimney(beneath Plume D)may stem from gas saturated localized strong permeability zone.High-resolution seismic profiles reveal pipe-like structures,characterized by stacked localized amplitude anomalies,just beneath all the plumes,which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor,feeding the gas plumes.The differences between these pipe-like structures indicate the dynamic process of gas seepage,which may be controlled by the build-up and dissipation of pore pressure.The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney.Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.
基金This work was financially supported by the National Key R&D Program of China,(No.2018YFC0310800)the China Ocean Mineral Resources Research and Development Association Program(Nos.DY135-E2-3-04&DY135-E2-1-02)+1 种基金the National Natural Science Foundation of China(NSFC)(Nos.41876178&31572229)the Senior User Project of RV KEXUE(No.KEXUE2018G25).
文摘This work reports on a preliminary taxonomic study of epibenthic macroinvertebrates collected or observed by underwater video at the Haima cold seeps and in adjacent deep-sea habitats,including a mud volcano feld and Ganquan Plateau,during an expedition in the South China Sea by the Chinese-manned submersible Shenhai Yongshi in May 2018.A total of 41 species belonging to 6 phyla were identifed,among which 34 species were collected from the Haima cold seeps.Mollusks and crustaceans that are specialized in reducing habitats were predominant in biotopes of the Haima cold seeps,whereas sponges and cold-water corals and their commensals were prominent in communities of the mud volcano feld and the slopes of Ganquan Plateau.The distribution and faunal composition of each taxonomic group are discussed.
基金financially supported by the National Natural Science Foundation of China(42022046)the National Key Research and Development Program of China(2021YFF0502300)+1 种基金the Key Special Project for Introduced Talent Teams of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0403 and GML2019ZD0401)Guangdong Natural Resources Foundation(GDNRC[2022]45)。
文摘Microplastics(MPs)are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle.The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks.Here,we demonstrate that cold seep sediments,which are characterized by methane fluid seepage and a chemosynthetic ecosystem,effectively capture and accommodate small-scale(<100μm)MPs,with 16 types of MPs being detected.The abundance of MPs in the surface of the sediment is higher in methane-seepage locations than in non-seepage areas.Methane seepage is beneficial to the accumulation,fragmentation,increased diversity,and aging of MPs.In turn,the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide,which is associated with the anaerobic oxidation of methane(AOM).The efficiency of the AOM determines whether the seeping methane(which has a greenhouse effect 83 times greater than that of CO_(2)over a 20-year period)can enter the atmosphere,which is important to the global methane cycle,since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.
基金supported by the Key Research and Development Project of Guangdong Province(Grant:2020B1111510001)supported by the Project of Sanya Yazhou Bay Science and Technology City(Grant No:SCKJ-JYRC-2022-14)the National Natural Science Foundation of China(Grant No:92262304).
文摘The use of ocean bottom seismometers provides an effective means of studying the process and the dynamic of cold seeps by continuously recording micro-events produced by sub-seafloor fluid migration.We deployed a four-component Ocean Bottom Seismometer(OBS)at an active site of the Haima cold seep from 6 November to 19 November in 2021.Here,we present the results of this short-term OBS monitoring.We first examine the OBS record manually to distinguish(by their distinctive seismographic signatures)four types of events:shipping noises,vibrations from our remotely operated vehicle(ROV)operations,local earthquakes,and short duration events(SDEs).Only the SDEs are further discussed in this work.Such SDEs are similar to those observed in other sea areas and are interpreted to be correlated with sub-seafloor fluid migration.In the OBS data collected during the 14-day monitoring period.We identify five SDEs.Compared to the SDE occurrence rate observed in other cold seep regions,five events is rather low,from which it could be inferred that fluid migration,and subsequent gas seepage,is not very active at the Haima site.This conclusion agrees with multi-beam and chemical observations at that site.Our observations thus provide further constraint on the seepage activity in this location.This is the first time that cold seep-related SDEs have been identified in the South China Sea,expanding the list of sea areas where SDEs are now linked to cold seep fluid migration.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0409,SMSEGL20SC02)Research Grants Council of Hong Kong(12101021)Guangdong Natural Science Foundation(2020A1515011117)。
文摘Endosymbiosis with Gammaproteobacteria is fundamental for the success of bathymodioline mussels in deep-sea chemosynthesis-based ecosystems. However, the recent discovery of Campylobacteria on the gill surfaces of these mussels suggests that these host-bacterial relationships may be more complex than previously thought. Using the cold-seep mussel(Gigantidas haimaensis) as a model, we explored this hostbacterial system by assembling the host transcriptome and genomes of its epibiotic Campylobacteria and endosymbiotic Gammaproteobacteria and quantifying their gene and protein expression levels. We found that the epibiont applies a sulfur oxidizing(SOX)multienzyme complex with the acquisition of sox B from Gammaproteobacteria for energy production and switched from a reductive tricarboxylic acid (rTCA) cycle to a Calvin-Benson-Bassham(CBB)cycle for carbon assimilation. The host provides metabolic intermediates, inorganic carbon, and thiosulfate to satisfy the materials and energy requirements of the epibiont, but whether the epibiont benefits the host is unclear. The endosymbiont adopts methane oxidation and the ribulose monophosphate pathway(Ru MP) for energy production, providing the major source of energy for itself and the host. The host obtains most of its nutrients, such as lysine, glutamine, valine,isoleucine, leucine, histidine, and folate, from the endosymbiont. In addition, host pattern recognition receptors, including toll-like receptors, peptidoglycan recognition proteins, and C-type lectins, may participate in bacterial infection, maintenance, and population regulation. Overall, this study provides insights into the complex host-bacterial relationships that have enabled mussels and bacteria to thrive in deep-sea chemosynthetic ecosystems.
基金Supported by the National Natural Science Foundation of China(No.U2006203)the National Natural Science Foundation of Jiangsu Province(No.BK20201211)the Senior User Project of R/V Kexue(No.KEXUE2020GZ02)。
文摘A new prenylated indole alkaloid 11,17-epi-mangrovamide A(1),a new natural occurring product,1,7-dihydroxy-6-methyl-8-hydroxymethyl-xanthone(2),two known alkaloids,mangrovamide A(3)and mangrovamide G(4),and four known polyketide derivatives(5–8)were isolated and identified from the cold-seep sediment derived fungal strain Talaromyces funiculosus SD-523.Their structures were elucidated by combination of nuclear magnetic resonance(NMR),high resolution electrospray ionization mass spectroscopy(HRESIMS),quantum chemical electronic circular dichroism(ECD),and DP4+probability analysis as well as by comparison of the data with literature reports.All isolated compounds were tested for antibacterial activities.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD074)the Laboratory for Marine Mineral Resources+3 种基金Qingdao National Laboratory for Marine Science and Technology(No.MMRKF201810)the National Natural Science Foundation of China(No.41606077)the National Key R&D Program of China:HighPrecision Characterization Technology of Gas Hydrate Reservoir(No.2017YFC0307406-03)supported by the Shandong Province Taishan Scholar Construction Project。
文摘Submarine seep plumes are a natural phenomenon in which different types of gases migrate through deep or shallow subsurface sediments and leak into seawater in pressure gradient.When detected using acoustic data,the leaked gases frequently exhibit a flame-like structure.We numerically modelled the relationship between the seismic response characteristic and bubble volume fraction to establish the bubble volume fraction in the submarine seep plume.Results show that our models are able to invert and predict the bubble volume fraction from field seismic oceanography data,by which synthetic seismic sections in different dominant frequencies could be numerically simulated,seismic attribute sections(e.g.,instantaneous amplitude,instantaneous frequency,and instantaneous phase)extracted,and the correlation between the seismic attributes and bubble volume fraction be quantitatively determined with functional equations.The instantaneous amplitude is positively correlated with bubble volume fraction,while the instantaneous frequency and bubble volume fraction are negatively correlated.In addition,information entropy is introduced as a proxy to quantify the relationship between the instantaneous phase and bubble volume fraction.As the bubble volume fraction increases,the information entropy of the instantaneous phase increases rapidly at the beginning,followed by a slight upward trend,and finally stabilizes.Therefore,under optimal noise conditions,the bubble volume fraction of submarine seep plumes can be inverted and predicted based on seismic response characteristics in terms of seismic attributes.
基金Supported by the Key Research and Development Project of Guangdong Province(No.2020B1111510001)the National Natural Science Foundation of China(No.U2244224)+1 种基金the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2020GD0802)the Guangdong Special Support Team Program(No.2019BT02H594)。
文摘Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.