The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non...The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes.展开更多
Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.T...Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.展开更多
基金financially supported by the Deanship of Scientific Research,Qassim University,Saudi Arabia for funding the publication of this project.
文摘The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes.
基金supported by the National Natural Science Foundation of China(No.61170106)
文摘Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.