Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S...Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.展开更多
Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the sup...Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.展开更多
There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It main...There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.展开更多
Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identifica...Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identification.However,speckle noise,weak boundaries,and intensity inhomogeneity often exist in the oil spill regions of SAR imagery,which will seriously aff ect the accurate identification of oil spills.To enhance marine oil spill segmentation of SAR images,a fast,edge-preserving framework based on the distance-regularized level set evolution(DRLSE)model was proposed.Specifically,a bilateral filter penalty term is designed and incorporated into the DRLSE energy function(BF-DRLSE)to preserve the edges of oil spills,and an adaptive initial box boundary was selected for the DRLSE model to reduce the operation time complexity.Two sets of RadarSat-2 SAR data were used to test the proposed method.The experimental results indicate that the bilateral filtering scheme incorporated into the energy function during level set evolution improved the stability of level set evolution.Compared with other methods,the proposed improved BF-DRLSE algorithm displayed a higher overall segmentation accuracy(97.83%).In addition,using an appropriate initial box boundary for the DRLSE method accelerated the global search process,improved the accuracy of oil spill segmentation,and reduced computational time.Therefore,the results suggest that the proposed framework is eff ective and applicable for marine oil spill segmentation.展开更多
In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable fo...In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable for SAR image segmentation is defined.It consists of two termsdescribing the local statistic characteristics and the gradient characteristics of SAR image respectively.A multiphase level set model that explicitly describes the different regions in one image is proposed.The purpose of such a multiphase model is not only to simplify the way of denoting multi-region by levelset but also to guarantee the accuracy of segmentation.According to the presented multiphase model,the curve evolution equations with respect to edge curves are deduced.The multi-region segmentationis implemented by the numeric solution of the partial differential equations.The performance of theapproach is verified by both simulation and real SAR images.The experiments show that the proposedalgorithm reduces the speckle effect on segmentation and increases the boundary alignment accuracy,thus correctly divides the multi-region SAR image into different homogenous regions.展开更多
Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values chang...Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.展开更多
Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a d...Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a dense network of cytoskeletal proteins,cell adhesion molecules,and voltage gated ion channels and is located at the proximal most region of the axon(Koleand Stuart, 2012).展开更多
基金supported by the Specialized Research Found for the Doctoral Program of Higher Education (20070699013)the Natural Science Foundation of Shaanxi Province (2006F05)the Aeronautical Science Foundation (05I53076)
文摘Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(4117132741301361)+2 种基金the National Key Basic Research Program of China(973 Program)(2012CB719903)the Science and Technology Project of Ministry of Transport of People’s Republic of China(2012-364-X11-803)the Shanghai Municipal Natural Science Foundation(12ZR1433200)
文摘Segmentation is the key step in auto-interpretation of high-resolution spaceborne synthetic aperture radar(SAR) images. A novel method is proposed based on integrating the geometric active contour(GAC) and the support vector machine(SVM)models. First, the images are segmented by using SVM and textural statistics. A likelihood measurement for every pixel is derived by using the initial segmentation. The Chan-Vese model then is modified by adding two items: the likelihood and the distance between the initial segmentation and the evolving contour. Experimental results using real SAR images demonstrate the good performance of the proposed method compared to several classic GAC models.
基金Support by the National Natural Science Foundation of China (NSFC) (No.60472072)the Specialized Research Foundation for the Doctoral Program of Higher Education (No.20040699034)+1 种基金the Aeronautical Science Foundation of China (No.05I53076)the Yellow River Conser-vancy Commission (YRCC) Research on ecological im-provement of the Yellow River (No.2004SZ01-04)
文摘There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.
基金Supported by the National Key R&D Program of China(No.2017YFC1405600)the National Natural Science Foundation of China(Nos.41776182,42076182)the Natural Science Foundation of Shandong Province(No.ZR2016DM16)。
文摘Marine oil spills are among the most significant sources of marine pollution.Synthetic aperture radar(SAR)has been used to improve oil spill observations because of its advantages in oil spill detection and identification.However,speckle noise,weak boundaries,and intensity inhomogeneity often exist in the oil spill regions of SAR imagery,which will seriously aff ect the accurate identification of oil spills.To enhance marine oil spill segmentation of SAR images,a fast,edge-preserving framework based on the distance-regularized level set evolution(DRLSE)model was proposed.Specifically,a bilateral filter penalty term is designed and incorporated into the DRLSE energy function(BF-DRLSE)to preserve the edges of oil spills,and an adaptive initial box boundary was selected for the DRLSE model to reduce the operation time complexity.Two sets of RadarSat-2 SAR data were used to test the proposed method.The experimental results indicate that the bilateral filtering scheme incorporated into the energy function during level set evolution improved the stability of level set evolution.Compared with other methods,the proposed improved BF-DRLSE algorithm displayed a higher overall segmentation accuracy(97.83%).In addition,using an appropriate initial box boundary for the DRLSE method accelerated the global search process,improved the accuracy of oil spill segmentation,and reduced computational time.Therefore,the results suggest that the proposed framework is eff ective and applicable for marine oil spill segmentation.
文摘In this letter,a multiphase level set approach unifying region and boundary-based infor-mation for multi-region segmentation of Synthetic Aperture Radar(SAR)image is presented.Anenergy functional that is applicable for SAR image segmentation is defined.It consists of two termsdescribing the local statistic characteristics and the gradient characteristics of SAR image respectively.A multiphase level set model that explicitly describes the different regions in one image is proposed.The purpose of such a multiphase model is not only to simplify the way of denoting multi-region by levelset but also to guarantee the accuracy of segmentation.According to the presented multiphase model,the curve evolution equations with respect to edge curves are deduced.The multi-region segmentationis implemented by the numeric solution of the partial differential equations.The performance of theapproach is verified by both simulation and real SAR images.The experiments show that the proposedalgorithm reduces the speckle effect on segmentation and increases the boundary alignment accuracy,thus correctly divides the multi-region SAR image into different homogenous regions.
文摘Building segmentation from high-resolution synthetic aperture radar (SAR) images has always been one of the important research issues. Due to the existence of speckle noise and multipath effect, the pixel values change drastically, causing the large intensity differences in pixels of building areas. Moreover, the geometric structure of buildings can cause strong scattering spots, which brings difficulties to the segmentation and extraction of buildings. To solve of these problems, this paper presents a coherence-coefficient-based Markov random field (CCMRF) approach for building segmentation from high-resolution SAR images. The method introduces the coherence coefficient of interferometric synthetic aperture radar (InSAR) into the neighborhood energy based on traditional Markov random field (MRF), which makes interferometric and spatial contextual information more fully used in SAR image segmentation. According to the Hammersley-Clifford theorem, the problem of maximum a posteriori (MAP) for image segmentation is transformed into the solution of minimizing the sum of likelihood energy and neighborhood energy. Finally, the iterative condition model (ICM) is used to find the optimal solution. The experimental results demonstrate that the proposed method can segment SAR building effectively and obtain more accurate results than the traditional MRF method and K-means clustering.
基金supported by National Institutes of Health Grants NS069688 and NS044916, TIRR Foundationthe Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
文摘Myelinated axons of the peripheral and central nervous system(PNS&CNS)are divided into molecularly distinct excitable domains,including the axon initial segment(AIS)and nodes of Ranvier.The AIS is composed of a dense network of cytoskeletal proteins,cell adhesion molecules,and voltage gated ion channels and is located at the proximal most region of the axon(Koleand Stuart, 2012).