Skin melanoma is one of the most common malignant tumorsoriginating from melanocytes, and the incidence of the Chinese populationis showing a continuous increasing trend. Early and accurate diagnosisof melanoma has gr...Skin melanoma is one of the most common malignant tumorsoriginating from melanocytes, and the incidence of the Chinese populationis showing a continuous increasing trend. Early and accurate diagnosisof melanoma has great significance for guiding clinical treatment.However, the symptoms of malignant melanoma are not obvious in theearly stage. It is difficult to be diagnosed with human observation. Meanwhile,it is easy to spread due to missed diagnosis. In order to accuratelydiagnose melanoma, end-to-end skin lesion attribute segmentation frameworkis presented in this paper. It is applied to facilitate the digitalizationprocess of attributes segmentation. The framework was improved on theU-Net construction that use the channel context feature fusion modulebetween the encoder and decoder to further merge context information. Adual-domain attention module is proposed to get more effective informationfrom the feature map. It shows that the proposed method effectivelysegments the lesion attributes and achieves good result in the ISIC2018task2 dataset.展开更多
基金The paper is supported by the National Natural Science Foundation of China under Grant No.62072135 and No.61672181.
文摘Skin melanoma is one of the most common malignant tumorsoriginating from melanocytes, and the incidence of the Chinese populationis showing a continuous increasing trend. Early and accurate diagnosisof melanoma has great significance for guiding clinical treatment.However, the symptoms of malignant melanoma are not obvious in theearly stage. It is difficult to be diagnosed with human observation. Meanwhile,it is easy to spread due to missed diagnosis. In order to accuratelydiagnose melanoma, end-to-end skin lesion attribute segmentation frameworkis presented in this paper. It is applied to facilitate the digitalizationprocess of attributes segmentation. The framework was improved on theU-Net construction that use the channel context feature fusion modulebetween the encoder and decoder to further merge context information. Adual-domain attention module is proposed to get more effective informationfrom the feature map. It shows that the proposed method effectivelysegments the lesion attributes and achieves good result in the ISIC2018task2 dataset.