In this paper,the equivalent radius of radioactive sources in each segment is determined by analyzing the different responses of the two identical detectors,and an improved segmented gamma scanning is used to assay wa...In this paper,the equivalent radius of radioactive sources in each segment is determined by analyzing the different responses of the two identical detectors,and an improved segmented gamma scanning is used to assay waste drums containing mainly organic materials,and proved by an established simulation model.The simulated radioactivity distributions in homogenous waste drum and an experimental heterogeneous waste drum were compared with those of traditional segmented gamma scanning.The results show that our method is good in performance and can be used for analyzing the waste drums.展开更多
Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of...Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of materials and micromorphololgy or roughness of the surface. So it is necessary to understand the morphology of the surface inside of blood pump in order to develop and improve a good quality blood pump. The authors observed and analysed the inner surface of blood pumps (both preimplanted and postimplanted) with scanning electron microscopy (SEM) providing a means for evaluating the blood pumps and for developing good quality of blood pumps. It was observed that there were four kinds of surface defects on the inner surface of the blood pumps: air bubble domes, open bubble craters, contaminated dust and gel particles. Microcrakes had also been found on the diaphragm of the postimplanted pump. But in the newly improved blood pump that had been imlanted for 16 days, there were few defects on the blood contacting surface, and only a little fibrinous layer observed. It could be considered that the current design and modifications are reasonable. Since some problems associated with the surface defects and thrombosis still existed, further improvement in fabrication process and quality control procedures with SEM are under way.展开更多
Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze it...Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion: Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.展开更多
We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atom...We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing...This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte i...A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte in lager quantity of the captured images if we directly scan the blood smear along an ordinary zigzag scanning routine with high power(100^(x))objective.Due to the larger field of view of low power(10^(x))objective,the captured low power blood smear images can be used to locate leukocytes.All of the located positions make up a specific routine,if we scan the blood smear along this routine with high power objective,there will be definitely leukocytes in almost all of the captured images.Considering the number of captured images is still large and some leukocytes may be redundantly captured twice or more,a leukocyte clustering method based on max-min distance clustering is developed to reduce the total number of captured images as well as the number of redundantly captured leukocytes.This method can improve the scanning eficiency obviously.The experimental results show that the proposed method can shorten scanning time from 8.0-14.0min to 2.54.0 min while extracting 110 nonredundant individual high power leukocyte images.展开更多
AIMTo assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT) in comparison with A-scan ultrasonography (A-scan US).METHODSThere were 218 adult subjects (218 eyes) aged 59.2&...AIMTo assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT) in comparison with A-scan ultrasonography (A-scan US).METHODSThere were 218 adult subjects (218 eyes) aged 59.2±9.2y enrolled in this prospective cross-sectional study. Forty-three eyes had open angles and 175 eyes had narrow angles. Routine ophthalmic exam was performed and nuclear opacity was graded using the Lens Opacities Classification System III (LOCS III). Lens thickness was measured by AS-OCT (Visante OCT, Carl Zeiss Meditec, Dublin, CA, USA). The highest quality image was selected for each eye and lens thickness was calculated using ImageJ software. Lens thickness was also measured by A-scan US.RESULTSInterclass correlations showed a value of 99.7% for intra-visit measurements and 95.3% for inter-visit measurements. The mean lens thickness measured by AS-OCT was not significantly different from that of A-scan US (4.861±0.404 vs 4.866±0.351 mm, P=0.74). Lens thickness values obtained from the two instruments were highly correlated overall (Pearson correlation coefficient=0.81, P<0.001), and in all LOCS III specific subgroups except in grade 5 of nuclear opacity. Bland-Altman analysis revealed a 95% limit of agreement from -0.45 to 0.46 mm. Lens thickness difference between the two instruments became smaller as the lens thickness increased and AS-OCT yielded smaller values than A-scan US in thicker lens (β=-0.29, P<0.001)CONCLUSIONAS-OCT-derived lens thickness measurement is valid and comparable to the results obtained by A-scan US. It can be used as a reliable noncontact method for measuring lens thickness in adults with or without significant cataract.展开更多
Airborne laser scanning(ALS)has been widely applied to estimate tree and forest attributes,but it can also drive the segmentation of forest areas.Clustering algorithms are the dominant technique in segmentation but sp...Airborne laser scanning(ALS)has been widely applied to estimate tree and forest attributes,but it can also drive the segmentation of forest areas.Clustering algorithms are the dominant technique in segmentation but spatial optimization using exact methods remains untested.This study presents a novel approach to segmentation based on mixed integer programming to create forest management units(FMUs).This investigation focuses on using raster information derived from ALS surveys.Two mainstream clustering algorithms were compared to the new MIP formula that simultaneously accounts for area and adjacency restrictions,FMUs size and homogeneity in terms of vegetation height.The optimal problem solution was found when using less than 150 cells,showing the problem formulation is solvable.The results for MIP were better than for the clustering algorithms;FMUs were more compact based on the intravariation of canopy height and the variability in size was lower.The MIP model allows the user to strictly control the size of FMUs,which is not possible in heuristic optimization and in the clustering algorithms tested.The definition of forest management units based on remote sensing data is an important operation and our study pioneers the use of MIP ALS-based optimal segmentation.展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
基金Supported by National Natural Science Foundation of China(No.10675084)
文摘In this paper,the equivalent radius of radioactive sources in each segment is determined by analyzing the different responses of the two identical detectors,and an improved segmented gamma scanning is used to assay waste drums containing mainly organic materials,and proved by an established simulation model.The simulated radioactivity distributions in homogenous waste drum and an experimental heterogeneous waste drum were compared with those of traditional segmented gamma scanning.The results show that our method is good in performance and can be used for analyzing the waste drums.
文摘Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of materials and micromorphololgy or roughness of the surface. So it is necessary to understand the morphology of the surface inside of blood pump in order to develop and improve a good quality blood pump. The authors observed and analysed the inner surface of blood pumps (both preimplanted and postimplanted) with scanning electron microscopy (SEM) providing a means for evaluating the blood pumps and for developing good quality of blood pumps. It was observed that there were four kinds of surface defects on the inner surface of the blood pumps: air bubble domes, open bubble craters, contaminated dust and gel particles. Microcrakes had also been found on the diaphragm of the postimplanted pump. But in the newly improved blood pump that had been imlanted for 16 days, there were few defects on the blood contacting surface, and only a little fibrinous layer observed. It could be considered that the current design and modifications are reasonable. Since some problems associated with the surface defects and thrombosis still existed, further improvement in fabrication process and quality control procedures with SEM are under way.
文摘Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system), and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion: Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.
基金funding support from the National Research Foundation (Competitive Research Program grant number NRF-CRP16-2015-05)the National University of Singapore Early Career Research Award+1 种基金supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowshipa Schmidt Sciences program。
文摘We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金Project(SIIT-AUN/SEED-Net-G-S1 Y16/018)supported by the Doctoral Asean University Network ProgramProject supported by the Metropolitan Expressway Co.,Ltd.,Japan+2 种基金Project supported by Elysium Co.Ltd.Project supported by Aero Asahi Corporation,Co.,Ltd.Project supported by the Expressway Authority of Thailand。
文摘This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
基金supported by the 863 National Plan Foundation of China under Grant No.2007AA01Z333 and Special Grand National Project of China under Grant No.2009ZX02204-008.
文摘A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte in lager quantity of the captured images if we directly scan the blood smear along an ordinary zigzag scanning routine with high power(100^(x))objective.Due to the larger field of view of low power(10^(x))objective,the captured low power blood smear images can be used to locate leukocytes.All of the located positions make up a specific routine,if we scan the blood smear along this routine with high power objective,there will be definitely leukocytes in almost all of the captured images.Considering the number of captured images is still large and some leukocytes may be redundantly captured twice or more,a leukocyte clustering method based on max-min distance clustering is developed to reduce the total number of captured images as well as the number of redundantly captured leukocytes.This method can improve the scanning eficiency obviously.The experimental results show that the proposed method can shorten scanning time from 8.0-14.0min to 2.54.0 min while extracting 110 nonredundant individual high power leukocyte images.
文摘AIMTo assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT) in comparison with A-scan ultrasonography (A-scan US).METHODSThere were 218 adult subjects (218 eyes) aged 59.2±9.2y enrolled in this prospective cross-sectional study. Forty-three eyes had open angles and 175 eyes had narrow angles. Routine ophthalmic exam was performed and nuclear opacity was graded using the Lens Opacities Classification System III (LOCS III). Lens thickness was measured by AS-OCT (Visante OCT, Carl Zeiss Meditec, Dublin, CA, USA). The highest quality image was selected for each eye and lens thickness was calculated using ImageJ software. Lens thickness was also measured by A-scan US.RESULTSInterclass correlations showed a value of 99.7% for intra-visit measurements and 95.3% for inter-visit measurements. The mean lens thickness measured by AS-OCT was not significantly different from that of A-scan US (4.861±0.404 vs 4.866±0.351 mm, P=0.74). Lens thickness values obtained from the two instruments were highly correlated overall (Pearson correlation coefficient=0.81, P<0.001), and in all LOCS III specific subgroups except in grade 5 of nuclear opacity. Bland-Altman analysis revealed a 95% limit of agreement from -0.45 to 0.46 mm. Lens thickness difference between the two instruments became smaller as the lens thickness increased and AS-OCT yielded smaller values than A-scan US in thicker lens (β=-0.29, P<0.001)CONCLUSIONAS-OCT-derived lens thickness measurement is valid and comparable to the results obtained by A-scan US. It can be used as a reliable noncontact method for measuring lens thickness in adults with or without significant cataract.
基金supported by MODFIRE project—A multiple criteria approach to integrate wildfire behavior in forest management planning(PCIF/MOS/0217/2017)benefited from the research exchange platform provided by the Su Fo Run project(Marie SklodowskaCurie Grant Agreement No.691149)。
文摘Airborne laser scanning(ALS)has been widely applied to estimate tree and forest attributes,but it can also drive the segmentation of forest areas.Clustering algorithms are the dominant technique in segmentation but spatial optimization using exact methods remains untested.This study presents a novel approach to segmentation based on mixed integer programming to create forest management units(FMUs).This investigation focuses on using raster information derived from ALS surveys.Two mainstream clustering algorithms were compared to the new MIP formula that simultaneously accounts for area and adjacency restrictions,FMUs size and homogeneity in terms of vegetation height.The optimal problem solution was found when using less than 150 cells,showing the problem formulation is solvable.The results for MIP were better than for the clustering algorithms;FMUs were more compact based on the intravariation of canopy height and the variability in size was lower.The MIP model allows the user to strictly control the size of FMUs,which is not possible in heuristic optimization and in the clustering algorithms tested.The definition of forest management units based on remote sensing data is an important operation and our study pioneers the use of MIP ALS-based optimal segmentation.
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.