The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ...The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.展开更多
We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic...We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.展开更多
On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inver...On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.展开更多
As a high-precision survey method,seismic surveying has been increasingly applied to inland water research,although its application to artificial reservoirs has remained limited.As a special artificial water body,rese...As a high-precision survey method,seismic surveying has been increasingly applied to inland water research,although its application to artificial reservoirs has remained limited.As a special artificial water body,reservoirs have important effects on the fluvial transport of material from land to ocean,and inevitably have complex terrain which can complicate and distort the results of seismic surveys.Therefore,there are still some problems need to be resolved in the application of seismic surveys in reservoirs with complex terrain.For this study,the Dongfeng Reservoir located in the upper reaches of the Wujiang River was chosen as an example to test the seismic survey method.Our testing showed that(1)because of the complex underwater terrain,the signal-to-noise ratio of the echo signal in canyon reservoir is low,making it difficult to determine sediment layers thicknesses in some areas;and(2)due to the large spatial heterogeneity of sediment distribution,insufficient density of cross-sections can lead to inaccurate interpolation results.To improve the accuracy of calculations,a mathematical method was used.Ultimately,the total burial mass of sediment was estimated at 2.85 x 107 tons,and the average burial rates of total organic carbon,total phosphorus,and total nitrogen were estimated at 0.194,0.011,and 0.014 g cm-2 year-1,respectively.These values were close to the results of previous studies and hydrographic station data,indicating that seismic survey can be a reliable and efficient method for the mapping of reservoirs.展开更多
Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wave...Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.展开更多
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of ...The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.展开更多
The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitiv...The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.展开更多
The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,sc...The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.展开更多
To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional ...To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC.展开更多
Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth el...Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth elements were completely enriched in phosphate-phase and cerium in iron-phase. Rare earth elements in the sediments were originally derived from seawater. During lithi- genic and minerogenic processes of metalliferous nodules, three-valence rare earth elements in sediments mobilized and incorporated into sediments as authigenous biogenic-apatite, while cerium had change from Ce3+ to Ce4+ and directly precipitated from seawater and entered metalliferous nodules and caused Ce anomalies in REE pattern in sediments.展开更多
Seismic phase pickers based on deep neural networks have been extensively used recently,demonstrating their advantages on both performance and efficiency.However,these pickers are trained with and applied to different...Seismic phase pickers based on deep neural networks have been extensively used recently,demonstrating their advantages on both performance and efficiency.However,these pickers are trained with and applied to different data.A comprehensive benchmark based on a single dataset is therefore lacking.Here,using the recently released DiTing dataset,we analyzed performances of seven phase pickers with different network structures,the efficiencies are also evaluated using both CPU and GPU devices.Evaluations based on F1-scores reveal that the recurrent neural network(RNN)and EQTransformer exhibit the best performance,likely owing to their large receptive fields.Similar performances are observed among PhaseNet(UNet),UNet++,and the lightweight phase picking network(LPPN).However,the LPPN models are the most efficient.The RNN and EQTransformer have similar speeds,which are slower than those of the LPPN and PhaseNet.UNet++requires the most computational effort among the pickers.As all of the pickers perform well after being trained with a large-scale dataset,users may choose the one suitable for their applications.For beginners,we provide a tutorial on training and validating the pickers using the DiTing dataset.We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users.All of our models are open-source and publicly accessible.展开更多
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc...This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.展开更多
We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines m...We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.展开更多
The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influence...The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.展开更多
Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb...Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.展开更多
Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used ...Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used for automatic accurate onset phase picking based on the proporty of dense seismic array observations. In our method, the Akaike's information criterion (AIC) for the single channel observation and the least-squares cross-correlation for the multi-channel observation are combined together. The tests by the seismic array observation data after triggering with the short-term average/long-term average (STA/LTA) technique show that the phase picking error is less than 0.3 s for local events by using the single channel AIC algorithm. In terms of multi-channel least-squares cross-correlation technique, the clear teleseismic P onset can be detected reliably. Even for the teleseismic records with high noise level, our algorithm is also able to effectually avoid manual misdetections.展开更多
In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg ...In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg as well asng and P (Pg) are two kinds of waves or identical wave?”;“on seismoiogicai phases in regional travel-timetable”;“on the symbols and identifications of phases in seismological observation repors”;“on the relation between mLg and ML”, and so on. Some confused ideas on these problems are clarified.展开更多
By analyzing seismograms of short period records at the Beijing SeismoJogicaJ Observatory, the present paper investigates the amplitude ratio of seismic phases. The results indicate that the amplitude ratio of Sn/Lg i...By analyzing seismograms of short period records at the Beijing SeismoJogicaJ Observatory, the present paper investigates the amplitude ratio of seismic phases. The results indicate that the amplitude ratio of Sn/Lg is correlated with the lithosphere structure, the thermal state, and strong earthquake occurrence in the region the seismic rays pass through. The significance of such a correlation in the study on the genesis and prediction of strong earthquakes is discussed.展开更多
Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes...Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42171135 and 12262009)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022098).
文摘The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.
基金supported by the National Natural Science Foundation of China(No.41204091)New Teachers’ Fund for Doctor Stations,the Ministry of Education(No.20105122120001)Science and Technology Support Program from Science and Technology Department of Sichuan Province(No.2011GZ0244)
文摘We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequencydependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
基金supported by National Key Basic Research Development Program (Grant No. 2007CB209600)National Major Science and Technology Program (Grant No. 2008ZX05010-002)
文摘On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory.
基金funded by the National Natural Science Foundation of China (No. 41573064)the National Key Research and Development program of China (No. 2016YFA0601003)
文摘As a high-precision survey method,seismic surveying has been increasingly applied to inland water research,although its application to artificial reservoirs has remained limited.As a special artificial water body,reservoirs have important effects on the fluvial transport of material from land to ocean,and inevitably have complex terrain which can complicate and distort the results of seismic surveys.Therefore,there are still some problems need to be resolved in the application of seismic surveys in reservoirs with complex terrain.For this study,the Dongfeng Reservoir located in the upper reaches of the Wujiang River was chosen as an example to test the seismic survey method.Our testing showed that(1)because of the complex underwater terrain,the signal-to-noise ratio of the echo signal in canyon reservoir is low,making it difficult to determine sediment layers thicknesses in some areas;and(2)due to the large spatial heterogeneity of sediment distribution,insufficient density of cross-sections can lead to inaccurate interpolation results.To improve the accuracy of calculations,a mathematical method was used.Ultimately,the total burial mass of sediment was estimated at 2.85 x 107 tons,and the average burial rates of total organic carbon,total phosphorus,and total nitrogen were estimated at 0.194,0.011,and 0.014 g cm-2 year-1,respectively.These values were close to the results of previous studies and hydrographic station data,indicating that seismic survey can be a reliable and efficient method for the mapping of reservoirs.
基金supported by the Major Basic Research Development Program of China (973 Project No. 2007CB209608)
文摘Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation.
基金The National Natural Science Foundation of China under contract Nos 41176053,41076029,91028002 and 41176046Dayang 115 under contract No.DYXM-115-02-3-01
文摘The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.
基金supported by funding from the National Natural Science Foundation of China (grant no. 41904061)China Postdoctoral Science Foundation (grant no. 2018M640742)
文摘The thermal structure of the lower mantle plays a key role in understanding the dynamic processes of the Earth's evolution and mantle convection.Because intrinsic attenuation in the lower mantle is highly sensitive to temperature,determining of the attenuation of the lower mantle could help us determine its thermal state.We attempted to constrain the attenuation of the lower mantle by measuring the amplitude ratios of p to ScP on the vertical component and s to ScS on the tangential component at short epicentral distances for seismic wave data from deep earthquakes in Northeast China.We calculated the theoretical amplitude ratios of p to ScP and s to ScS by using ray theory and the axial-symmetric spectral element method AxiSEM,as well as by considering the effects of radiation patterns,geometrical spreading,and ScP reflection coefficients.By comparing the observed amplitude ratios with the synthetic results,we constrained the quality factors as Qα≈3,000 and Qβ≈1,300 in the lower mantle beneath Northeast China,which are much larger than those in the preliminary reference Earth model(PREM)model of Qα~800 and Qβ~312.We propose that the lower mantle beneath Northeast China is relatively colder than the average mantle,resulting in weaker intrinsic attenuation and higher velocity.We estimated the temperature of the lower mantle beneath Northeast China as approximately 300–700 K colder than the global average value.
基金Project(2017GDASCX-0117)supported by the Guangdong Academy of Sciences,ChinaProject(201806010126)supported by the Pearl River S&T Nova Program of Guangzhou,China+3 种基金Projects(2017A050503004,2017A07071029)supported by the Guangdong Provincial Program of Science and Technology,ChinaProject(18126010)supported by the Guangxi Autonomous Regional Program of Science and Technology,ChinaProject(201802030012)supported by the Guangzhou Municipal Science and Technology Bureau,ChinaProject(2017A0109005)supported by the Sihui Plan Project of Science and Technology,China.
文摘The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.
基金supported by the National Natural Science Foundations of China (Nos. 41276084 and 41406100)
文摘To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC.
基金the R&D Project on the Oceanic Metalliferous Nodue during the "Ninth- Five- YearPlan"(No. DY95 ~ 02 ~ 10).
文摘Compared to North American shale composition (NASC), REE contents of sediments from the CC area in the Pacific Ocean are obviously high except that cerium has equal content to that of NASC. Three-valence rare earth elements were completely enriched in phosphate-phase and cerium in iron-phase. Rare earth elements in the sediments were originally derived from seawater. During lithi- genic and minerogenic processes of metalliferous nodules, three-valence rare earth elements in sediments mobilized and incorporated into sediments as authigenous biogenic-apatite, while cerium had change from Ce3+ to Ce4+ and directly precipitated from seawater and entered metalliferous nodules and caused Ce anomalies in REE pattern in sediments.
基金jointly supported by the National Natural Science Foundation of China (No. 42074060)the Special Fund, Institute of Geophysics, China Earthquake Administration (CEA-IGP) (Nos. DQJB19B29, DQJB20B15, and DQJB22Z01)supported by XingHuo Project, CEA (No. XH211103)
文摘Seismic phase pickers based on deep neural networks have been extensively used recently,demonstrating their advantages on both performance and efficiency.However,these pickers are trained with and applied to different data.A comprehensive benchmark based on a single dataset is therefore lacking.Here,using the recently released DiTing dataset,we analyzed performances of seven phase pickers with different network structures,the efficiencies are also evaluated using both CPU and GPU devices.Evaluations based on F1-scores reveal that the recurrent neural network(RNN)and EQTransformer exhibit the best performance,likely owing to their large receptive fields.Similar performances are observed among PhaseNet(UNet),UNet++,and the lightweight phase picking network(LPPN).However,the LPPN models are the most efficient.The RNN and EQTransformer have similar speeds,which are slower than those of the LPPN and PhaseNet.UNet++requires the most computational effort among the pickers.As all of the pickers perform well after being trained with a large-scale dataset,users may choose the one suitable for their applications.For beginners,we provide a tutorial on training and validating the pickers using the DiTing dataset.We also provide two sets of models trained using datasets with both 50 Hz and 100 Hz sampling rates for direct application by end-users.All of our models are open-source and publicly accessible.
文摘This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data.
基金This study is jointly sponsored by the Basic Scientific Research Fee of Institute of Geophysics,China Earthquake Administration(DQJB19A0114)the National Natural Science Foundation of China(41804047).
文摘We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.
基金Financial support from NSFC(Grant No.41572303,4151001059,41101008)Key Projects in the National Science & Technology Pillar Program(2014BAL05B01)CAS "Light of West China" Program
文摘The volume fraction of the solid and liquid phase of debris flows, which evolves simultaneously across terrains, largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper, we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth, the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress, and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition (Iverson and Ouyang, 2015) is presented. In this formula, the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe’s Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.
文摘Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
基金National Natural Science Foundation of China (Grant No. 40234043).
文摘Automatic phase picking is a critical procedure for seismic data processing, especially for a huge amount of seismic data recorded by a large-scale portable seismic array. In this study is presented a new method used for automatic accurate onset phase picking based on the proporty of dense seismic array observations. In our method, the Akaike's information criterion (AIC) for the single channel observation and the least-squares cross-correlation for the multi-channel observation are combined together. The tests by the seismic array observation data after triggering with the short-term average/long-term average (STA/LTA) technique show that the phase picking error is less than 0.3 s for local events by using the single channel AIC algorithm. In terms of multi-channel least-squares cross-correlation technique, the clear teleseismic P onset can be detected reliably. Even for the teleseismic records with high noise level, our algorithm is also able to effectually avoid manual misdetections.
文摘In this paper, some practical problems in seismological observations are discussed on the identification of seismiccrustal phase, such as: “whether P (Pg) and S(Sg) are direct waves or not?”; “whether S(Sg) and Lg as well asng and P (Pg) are two kinds of waves or identical wave?”;“on seismoiogicai phases in regional travel-timetable”;“on the symbols and identifications of phases in seismological observation repors”;“on the relation between mLg and ML”, and so on. Some confused ideas on these problems are clarified.
基金This project was sponsored by the Joint Earthquake Science Foundation, China.
文摘By analyzing seismograms of short period records at the Beijing SeismoJogicaJ Observatory, the present paper investigates the amplitude ratio of seismic phases. The results indicate that the amplitude ratio of Sn/Lg is correlated with the lithosphere structure, the thermal state, and strong earthquake occurrence in the region the seismic rays pass through. The significance of such a correlation in the study on the genesis and prediction of strong earthquakes is discussed.
文摘Earthquake data include informative seismic phases that require identification for imaging the Earth's structural interior.In order to identify the phases,we created a numerical method to calculate the traveltimes and raypaths by a shooting technique based upon the IASP91 Earth model,and it can calculate the traveltimes and raypaths for not only the seismic phases in the traditional traveltime tables such as IASP91,AK135,but also some phases such as pPcP,pPKIKP,and PPPPP.It is not necessary for this method to mesh the Earth model,and the results from the numerical modeling and its application show that the absolute differences between the calculated and theoretical traveltimes from the ISAP91 tables are less than 0.1 s.Thus,it is simple in manipulation and fast in computation,and can provide a reliable theoretical prediction for the identification of a seismic phase within the acquired earthquake data.