期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Study of the seismic performance of expansion double spherical seismic isolation bearings for continuous girder bridges 被引量:11
1
作者 Peng, Tianbo Yu, Xuntao +1 位作者 Wang, Zhennan Han, Lei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期163-172,共10页
The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipat... The development of an expansion double spherical seismic isolation (DSSI) bearing by modifying the fixed DSSI bearing is described in this paper. The expansion DSSI bearing is characterized by its good energy dissipation and horizontal displacement capacity and has been successfully integrated into the seismic design of several important engineering projects in China. It is envisioned to be used as a substitute for ordinary expansion bearings in continuous girder bridges to distribute the longitudinal earthquake action among all the piers. Its development, configuration and working mechanism are introduced first. The test method and the seismic performance of an expansion DSSI bearing are then briefly described. A theoretical analysis followed by a numerical analysis for an actual four-span continuous girder bridge are provided as an example, and it is concluded that the expansion DSSI bearing can be integrated into the seismic design of continuous girder bridges. 展开更多
关键词 double spherical seismic isolation (DSSI) bearing seismic isolation seismic performance continuous girder bridge
下载PDF
Three-dimensional seismic isolation bearing and its application in long span hangars 被引量:12
2
作者 Li Xiongyan Xue Suduo Cai Yancheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期55-65,共11页
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ... Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range. 展开更多
关键词 three-dimensional seismic isolation bearing (3DSIB) seismic isolation HANGAR axial force acceleration response
下载PDF
Influences of nonassociated flow rules on seismic bearing capacity factors of strip footing on soil slope by energy dissipation method 被引量:14
3
作者 杨小礼 郭乃正 +1 位作者 赵炼恒 邹金锋 《Journal of Central South University of Technology》 EI 2007年第6期842-847,共6页
Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient... Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity. 展开更多
关键词 nonassociated flow rule seismic bearing capacity factor EARTHQUAKE
下载PDF
Probabilistic analysis of ultimate seismic bearing capacity of strip foundations 被引量:4
4
作者 Adam Hamrouni Badreddine Sbartai Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期717-724,共8页
This paper presents a reliability analysis of the pseudo-static seismic bearing capacity of a strip foundation using the limit equilibrium theory. The first-order reliability method(FORM) is employed to calculate the ... This paper presents a reliability analysis of the pseudo-static seismic bearing capacity of a strip foundation using the limit equilibrium theory. The first-order reliability method(FORM) is employed to calculate the reliability index. The response surface methodology(RSM) is used to assess the Hasofer e Lind reliability index and then it is optimized using a genetic algorithm(GA). The random variables used are the soil shear strength parameters and the seismic coefficients(khand kv). Two assumptions(normal and non-normal distribution) are used for the random variables. The assumption of uncorrelated variables was found to be conservative in comparison to that of negatively correlated soil shear strength parameters. The assumption of non-normal distribution for the random variables can induce a negative effect on the reliability index of the practical range of the seismic bearing capacity. 展开更多
关键词 Strip foundations seismic bearing capacity First-order reliability method (FORM) Response surface methodology (RSM) RELIABILITY Genetic algorithm (GA)
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
5
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
The use of the node-based smoothed finite element method to estimate static and seismic bearing capacities of shallow strip footings 被引量:2
6
作者 H.C.Nguyen T.Vo-Minh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期180-196,共17页
The node-based smoothed finite element method(NS-FEM)is shortly presented for calculations of the static and seismic bearing capacities of shallow strip footings.A series of computations has been performed to assess v... The node-based smoothed finite element method(NS-FEM)is shortly presented for calculations of the static and seismic bearing capacities of shallow strip footings.A series of computations has been performed to assess variations in seismic bearing capacity factors with both horizontal and vertical seismic accelerations.Numerical results obtained agree very well with those using the slip-line method,revealing that the magnitude of the seismic bearing capacity is highly dependent upon the combinations of various directions of both components of the seismic acceleration.An upward vertical seismic acceleration reduces the seismic bearing capacity compared to the downward vertical seismic acceleration in calculations.In addition,particular emphasis is placed on a separate estimation of the effects of soil and superstructure inertia on each seismic bearing capacity component.While the effect of inertia forces arising in the soil on the seismic bearing capacity is non-trivial,and the superstructure inertia is the major contributor to reductions in the seismic bearing capacity.Both tables and charts are given for practical application to the seismic design of the foundations. 展开更多
关键词 Limit analysis Node-based smoothed finite element method(NS-FEM) Second-order cone programming(SOCP) seismic bearing capacity Strip footing
下载PDF
Seismic bearing capacity of strip footing on partially saturated soil using modal response analysis 被引量:1
7
作者 Abhijit Anand Rajib Sarkar 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期641-662,共22页
The present study proposes a novel and simplified methodology to assess the seismic bearing capacity(SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil ... The present study proposes a novel and simplified methodology to assess the seismic bearing capacity(SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil matrix. Furthermore, developed methodology incorporates the modal response analysis of soil layers to assess SBC. A constant matric suction distribution profile has been considered throughout the depth of the soil. The Van Genuchten equation and corresponding fitting parameters have been considered to quantify matric suction in the analysis. SBC has been obtained for three different geomaterials;viz. sand, fly ash and clay, based on their predominant grain size and diverse soil water characteristics curve(SWCC) attributes. Variation of SBC with different modes of vibration and damping ratio are reported for ranges of matric suction pertinent to the geomaterials considered in the study. The relative significance of matric suction on SBC has been reported for suction values within the transition zone of each geomaterial. It is observed that the SBC of sand is drastically reduced, with matric suction reaching beyond the residual suction value. The SBC of fly ash remains constant beyond the residual suction value, whereas the SBC of clay shows an increasing trend toward the practical range of matric suction values. 展开更多
关键词 seismic bearing capacity modal analysis matric suction
下载PDF
Design and experimental verification of a new multi-functional bridge seismic isolation bearing 被引量:8
8
作者 Chen-xi XING Hao WANG +1 位作者 Ai-qun LI Ji-rong WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第12期904-914,共11页
A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectiv... A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectively,the new MFBSIB can adjust the deformation caused by temperature,vehicle breaks,and concrete creep,etc.,in addition to dissipating energy.The switch of 'slide-isolation' is achieved and the efficiency of both upper and lower parts is validated through experiment with a model.The shear performance curve established in this paper is verified to be efficient in describing the mechanical characteristics of the bearing through experiment.It is proved through both numerical calculation and experimental analysis that the new MFBSIB is endowed with enough vertical rigidity,good energy dissipation ability,stable overall performance,and good realization in expected goals.Its performance is slightly influenced by shear stress,while affected by vertical pressure,loading frequency,slide limit,etc.,diversely.The results could provide reference for study and application of the new MFBSIB. 展开更多
关键词 seismic isolation bearing Sliding device Finite element analysis Model experiment BRIDGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部