期刊文献+
共找到1,665篇文章
< 1 2 84 >
每页显示 20 50 100
Inversion of walkaway VSP data in the presence of lateral velocity heterogeneity
1
作者 Vladimir Grechka Ilya Tsvankin Pedro Contreras 《Energy Geoscience》 EI 2024年第2期304-313,共10页
Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of late... Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth. 展开更多
关键词 Walkaway vertical seismic profile Lateral velocity heterogeneity Anisotropic parameter estimation Vertical inhomogeneity
下载PDF
Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications 被引量:2
2
作者 Weina Zhao Zhiqiang Wu +6 位作者 Fanghui Hou Xunhua Zhang Tianyao Hao Hanjoon Kim Yanpeng Zheng Shanshan Chen Huigang Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期104-119,共16页
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ... The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin. 展开更多
关键词 ocean bottom seismograph South Yellow Sea basin strata velocity structure wide-angle seismic data CSDP-2
下载PDF
Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography 被引量:2
3
作者 Bin Liu Jiansen Wang +2 位作者 Senlin Yang Xinji Xu Yuxiao Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期179-190,共12页
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron... Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application. 展开更多
关键词 Tunnel geological forward-prospecting seismic wave velocity Layered inversion Surrounding rock classification Artificial neural network(ANN)
下载PDF
Migration images guided high-resolution velocity modeling based on fully convolutional neural network
4
作者 DU Meng MAO Weijian +1 位作者 YANG Maoxin ZHAO Jianzhi 《Global Geology》 2024年第3期145-153,共9页
Current data-driven deep learning(DL)methods typically reconstruct subsurface velocity models directly from pre-stack seismic records.However,these purely data-driven methods are often less robust and produce results ... Current data-driven deep learning(DL)methods typically reconstruct subsurface velocity models directly from pre-stack seismic records.However,these purely data-driven methods are often less robust and produce results that are less physically interpretative.Here,the authors propose a new method that uses migration images as input,combined with convolutional neural networks to construct high-resolution velocity models.Compared to directly using pre-stack seismic records as input,the nonlinearity between migration images and velocity models is significantly reduced.Additionally,the advantage of using migration images lies in its ability to more comprehensively capture the reflective properties of the subsurface medium,including amplitude and phase information,thereby to provide richer physical information in guiding the reconstruction of the velocity model.This approach not only improves the accuracy and resolution of the reconstructed velocity models,but also enhances the physical interpretability and robustness.Numerical experiments on synthetic data show that the proposed method has superior reconstruction performance and strong generalization capability when dealing with complex geological structures,and shows great potential in providing efficient solutions for the task of reconstructing high-wavenumber components. 展开更多
关键词 deep learning seismic inversion migration imaging velocity modeling
下载PDF
Spatio-temporal variations of shallow seismic velocity changes in Salton Sea Geothermal Field,California in response to large regional earthquakes and long-term geothermal activities 被引量:1
5
作者 Chengyuan Zhang Zhigang Peng +1 位作者 Xiaoyan Liu Chenyu Li 《Earthquake Research Advances》 CSCD 2023年第2期15-23,共9页
We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field,California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007... We measure spatio-temporal variations of seismic velocity changes in Salton Sea Geothermal Field,California based on cross correlations of daily seismic traces recorded by a borehole seismic network from December 2007 to January 2014.We find clear co-seismic velocity reductions during the 2010 M 7.2 El Mayor–Cucapah,Mexico earthquake at~100 km further south,followed by long-term recoveries.The co-seismic reductions are larger with longer post-seismic recoveries in higher frequency bands,indicating that material damage and healing process mostly occurred in the shallow depth.In addition,the co-seismic velocity reductions are larger for ray paths outside the active fluid injection/extraction regions.The ray paths inside injection/extraction regions are associated with smaller co-seismic reductions,but subtle long-term velocity increases.We also build 3D transient water flow models based on monthly injection/extraction rates,and find correlations between several water flow parameters and co-seismic velocity reductions.We interpret the relative lack of co-seismic velocity changes within the geothermal region as unclogging of fracture network due to persistent fluid flows of geothermal production.The long-term velocity increase is likely associated with the ground water depletion and subsidence due to net production. 展开更多
关键词 seismic velocity changes Salton Sea Geothermal Field Ambient noises Induced earthquakes Qinghai-Tibetan Plateau
下载PDF
Seismic Velocity Structure and Composition of the Continental Crust of Eastern China 被引量:5
6
作者 WANGYang CAOJiamin ZHUJieshou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期291-297,共7页
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geother... On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China. 展开更多
关键词 crustal composition seismic velocity structure GEOTHERM DENSITY eastern China
下载PDF
Joint Inversion of the 3D P Wave Velocity Structure of the Crust and Upper Mantle under the Southeastern Margin of the Tibetan Plateau Using Regional Earthquake and Teleseismic Data 被引量:12
7
作者 LI Dahu LIAO Hua +4 位作者 DING Zhifeng ZHAN Yan WU Pingping XU Xiaoming ZHENG Chen 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第1期16-33,共18页
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o... The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity. 展开更多
关键词 3D P-wave velocity structure China seismic array detection Panxi region Chuan-DianBlock Daliangshan Block southeastern margin of Qinghai-Tibet Plateau
下载PDF
Velocity adjustable TMD and numerical simulation of seismic performance 被引量:4
8
作者 秦丽 周锡元 闫维明 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第2期147-158,共12页
A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR damper... A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (l) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes. 展开更多
关键词 velocity adjustable TMD passive TMDs MR damper seismic control control effectiveness
下载PDF
Simulation of the seismic response of sedimentary basins with constant-gradient velocity along arbitrary direction using boundary element method:SH case 被引量:4
9
作者 Zengxi Ge 《Earthquake Science》 CSCD 2010年第2期149-155,共7页
We presented a boundary element method using the approximate analytical Green's function given by Sanchez-Sesma et al. Coordinate transform is introduced to extend the method to deal with the model with constant-grad... We presented a boundary element method using the approximate analytical Green's function given by Sanchez-Sesma et al. Coordinate transform is introduced to extend the method to deal with the model with constant-gradient velocity along oblique direction. The method is validated by comparing the numerical results with other independent methods. This method provides a useful tool for analyzing local site effects. We computed seismic response for two series of models. The results in both frequency and time domains are analyzed and show complex amplification patterns. The fundamental mode of resonance is dependent not only on the velocity at the free surface but also on the velocity distribution of the whole basin. For the higher modes of vibration the heterogeneous basin also has its own characteristic. 展开更多
关键词 boundary element SH wave seismic response constant-gradient velocity
下载PDF
Active source monitoring at the Wenchuan fault zone:coseismic velocity change associated with aftershock event and its implication 被引量:6
10
作者 Wei Yang Hongkui Ge +3 位作者 Baoshan Wang Jiupeng Hu Songyong Yuan Sen Qiao 《Earthquake Science》 2014年第6期599-606,共8页
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem... With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling. 展开更多
关键词 Wenchuan fault zone Coseismic velocity change Accurately Controlled Routinely Operated seismic Source (ACROSS) Active monitoring Forward modeling
下载PDF
Numerical Simulation for Accuracy of Velocity Analysis in Small-Scale High-Resolution Marine Multichannel Seismic Technology 被引量:5
11
作者 LUO Di CAI Feng WU Zhiqiang 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第3期370-382,共13页
When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positi... When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration. 展开更多
关键词 SMALL-SCALE HIGH-RESOLUTION multichannel seismic velocity analysis accuracy gas hydrate
下载PDF
Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT) 被引量:13
12
作者 N.Hosseini K.Oraee +1 位作者 K.Shahriar K.Goshtasbi 《Journal of Central South University》 SCIE EI CAS 2012年第8期2297-2306,共10页
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ... Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations. 展开更多
关键词 longwall mining passive seismic velocity tomography simultaneous iterative reconstructive technique (SIRT) boundary element method stress redistribution ground control
下载PDF
Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm 被引量:7
13
作者 LURKA Adam SWANSON Peter 《Mining Science and Technology》 EI CAS 2009年第5期599-603,共5页
Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor ... Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 展开更多
关键词 seismic event location tomographic velocity model an evolutionary search algorithm
下载PDF
Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective 被引量:9
14
作者 Qing-Yu Wang HuaJian Yao 《Earth and Planetary Physics》 CSCD 2020年第5期532-542,共11页
Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the f... Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions.Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation.In this article,we outline some state-of-the-art techniques for noise-based monitoring,including moving-window cross-spectral analysis,the stretching method,dynamic time wrapping,wavelet cross-spectrum analysis,and a combination of these measurement methods,with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method.We briefly state the principles underlying the different methods and their pros and cons.By elaborating on some typical noisebased monitoring applications,we show how this technique can be widely applied in different scenarios and adapted to multiples scales.We list classical applications,such as following earthquake-related co-and postseismic velocity changes,forecasting volcanic eruptions,and tracking external environmental forcing-generated transient changes.By monitoring cases having different targets at different scales,we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs,landslides,and so forth.Finally,we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions.To improve the temporal and spatial resolution of passive-source noise monitoring,we propose integrating different methods and seismic sources.Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes. 展开更多
关键词 ambient noise correlation noise-based monitoring seismic wave velocity changes the evolution of physical properties of the crust
下载PDF
Effects of CO<sub>2</sub>Injection on the Seismic Velocity of Sandstone Saturated with Saline Water 被引量:3
15
作者 Marte Gutierrez Daisuke Katsuki Abdulhadi Almrabat 《International Journal of Geosciences》 2012年第5期908-917,共10页
Geological sequestration (GS) of carbon dioxide (CO2) is considered as one of the most promising technologies to reduce the amount of anthropogenic CO2 emission in the atmosphere. To ensure success of CO2 GS, monitori... Geological sequestration (GS) of carbon dioxide (CO2) is considered as one of the most promising technologies to reduce the amount of anthropogenic CO2 emission in the atmosphere. To ensure success of CO2 GS, monitoring is essential on ascertaining movement, volumes and locations of injected CO2 in the sequestration reservoir. One technique is to use time-lapsed seismic survey mapping to provide spatial distribution of seismic wave velocity as an indicator of CO2 migration and volumes in a storage reservoir with time. To examine the use of time-lapsed seismic survey mapping as a monitoring tool for CO2 sequestration, this paper presents mathematical and experimental studies of the effects of supercritical CO2 injection on the seismic velocity of sandstone initially saturated with saline water. The mathematical model is based on poroelasticity theory, particularly the application of the Biot-Gassmann substitution theory in the modeling of the acoustic velocity of porous rocks containing two-phase immiscible pore fluids. The experimental study uses a high pressure and high temperature triaxial cell to clarify the seismic response of a sample of Berea sandstone to supercritical CO2 injection under deep saline aquifer conditions. Measured ultrasonic wave velocity changes during CO2 injection in the sandstone sample show the effects of pore fluid distribution in the seismic velocity of porous rocks. CO2 injection was shown to decrease the P-wave velocity with increasing CO2 saturation whereas the S-wave velocity was almost constant. The results confirm that the Biot-Gassmann theory can be used to model the changes in the acoustic P-wave velocity of sandstone containing different mixtures of supercritical CO2 and saline water provided the distribution of the two fluids in the sandstone pore space is accounted for in the calculation of the pore fluid bulk modulus. The empirical relation of Brie et al. for the bulk modulus of mixtures of two-phase immiscible fluids, in combination with the Biot-Gassmann theory, was found to satisfactorily represent the pore-fluid dependent acoustic P-wave velocity of sandstone. 展开更多
关键词 Biot-Gassmann Theory CO2 GEOLOGICAL SEQUESTRATION Poroelasticity Porous Rocks Two-Phase Fluid Flow seismic velocity
下载PDF
Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 M_(S)6.0 Luxian earthquake source area,China
16
作者 Wei Xu Pingping Wu +4 位作者 Dahu Li Huili Guo Qiyan Yang Laiyu Lu Zhifeng Ding 《Earthquake Science》 2023年第5期356-375,共20页
On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dim... On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing. 展开更多
关键词 Luxian earthquake ambient noise tomography S-wave velocity model seismicITY seismogenic mechanism joint inversion
下载PDF
Three-dimensional high-resolution velocity structure imaging and seismicity study of Yangbi Ms6.4 earthquake 被引量:2
17
作者 Ma Yong Zhang Hai-Jiang +1 位作者 Gao Lei Bi Jin-Meng 《Applied Geophysics》 SCIE CSCD 2021年第4期579-591,595,共14页
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ... In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault. 展开更多
关键词 Tangshan fault double-diff erence tomography velocity structure seismic activity Vp/Vs inversion
下载PDF
Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm 被引量:3
18
作者 Yanyang Chen Yanbin Wang Yuansheng Zhang 《Earthquake Science》 CSCD 2017年第2期81-89,共9页
The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model... The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively. 展开更多
关键词 seismic waveform inversion Crustal velocity structure Central Gansu Province Firework algorithm
下载PDF
Crustal S-wave velocity structure of the Yellowstone region using a seismic ambient noise method 被引量:2
19
作者 Yan Lü Sidao Ni +3 位作者 Jun Xie Yingjie Xia Xiangfang Zeng Bin Liu 《Earthquake Science》 2013年第5期283-291,共9页
The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver func... The Yellowstone volcano is one of the largest active volcanoes in the world, and its potential hazards demand detailed seismological and geodetic studies. Previous studies with travel time tomography and receiver functions have revealed a low-velocity layer in the crust beneath the Yellowstone volcano, suggesting the presence of a magma chamber at depth. We use ambient seismic noise from regional seismic stations to retrieve short-period surface waves and then study the shallow shear velocity structure of the Yellowstone region by surface wave dispersion analysis. We first obtained a crustal model of the area outside of the Yellowstone volcano and then constructed an absolute shear wave velocity structure in combination with receiver function results for the crust beneath the Yellowstone volcano. The velocity model shows a low-velocity layer with shear velocity at around 1.3 km/s, suggesting that a large-scale magma chamber exists at shallow levels within the crust of the Yellowstone volcanic region. 展开更多
关键词 YELLOWSTONE seismic ambient noise Low-velocity layer
下载PDF
Two-step interface and velocity inversion—— Study o e of the Tangshan seismic region
20
作者 XIAO LING LAI XIAN KANG ZHANG XU YAO ZHENG Research Center of Exploration Geophysics, China Seismological Bureau, Zhengzhou 450003, China 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第6期34-44,共11页
This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity i... This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake. 展开更多
关键词 two step interface and velocity inversion 3 D velocity pattern of crust below Tangshan seismic region seismicity zone
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部