The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake ...The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake damage to civil engineering and environmental structures. Also the seismic intensity is usually assigned by engineers and seismologists with one or two characteristic parameters of earthquake ground motions to reflect earthquake damage potential so as to be able to serve as an input earthquake load for seismic design of structures. So choosing a proper parameter to reflect the action of seismic intensity is the main objective of the research on physical measure of seismic intensity. However, since various kinds of structures have quite different damage mechanisms, there will exist great differences in damages to different structures located at the same area during the same earthquake. Particularly, in some cases, quite different damages have happened even to the structures of same kind due to many other factors such as different construction materials, different configurations or on the different types of sites where structures located. In addition, the ground motion parameters, which result in damage to structures, are not the single peak value of ground motion. Hence, this paper emphasizes that the research on new physical measure of seismic intensity should not only consider the structural characteristics but also take into account other parameters such as duration, energy of ground motion and so on. In particular, as the physical measures of intensity, different ground motion parameter should be adopted for different structures.展开更多
The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from s...The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.展开更多
This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discuss...This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discusses briefly the types of earthquake-generating faults and some features of seismic damage.展开更多
By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of th...By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of the data. The author summarized the seismic intensity attenuation laws in the Xinjiang region with the multiple regression fitting method. The intensity attenuation function of the elliptical model was provided and the fitting results in different periods and areas were compared. Finally, the intensity attenuation relationship in the Xinjiang region was obtained by the method of constraining the start and end of the attenuation curves.展开更多
An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According...An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.展开更多
A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 f...A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 for 24 bit data sampling. The test on vibration table shows that the linearity of the meter is δL = ± 1.4% , and the sensitivity is Kc = 0.9671V/g with zero deviation of 0.0043 g. The seismic intensity meter has the advantages of simple structure and stable performance and it is appropriate for intensive layout on a large scale.展开更多
Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining an...Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining and assessing macroseismic observations, the authors chose twitter. Our methodology is validated in two recent earthquakes occurred in Greece: the January 26, 2014 ML = 5.8 in Kefallinia, and the November 17, 2014 ML = 5.2 in Evoikos. Twitter data published within the first 6 h, 12 h, 24 h and 48 h after the earthquake occurrence were analyzed to develop seismic intensity maps. Those maps were evaluated through intensity maps for the same earthquakes, published by international institutes. Evaluation results provide a strong empiric evidence for the credibility of our methodology, the accuracy of the produced seismic intensity maps and accentuate VGI, generated by twitter, as an adequate alternative source for collecting macroseismic information.展开更多
This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to ac...This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.展开更多
With the central part of Shanxi Province as an example, this paper studied seismic intensity zonation directly by use of the response intensity of historical earthquakes. From the result, some conclusions can be drawn...With the central part of Shanxi Province as an example, this paper studied seismic intensity zonation directly by use of the response intensity of historical earthquakes. From the result, some conclusions can be drawn as follows: ① For areas rich in data of historical earthquakes, the seismic intensity zonation map with probabilistic meanings can be compiled by use of the statistical features of the response intensity of sites; ② When determining the length of time for statistics, the completeness of response intensity data and the inhomogeneity of regional seismic activities should be fully considered; ③ By comparing the seismic intensity zonation result for recurrence interval of 500 years with the new Seismic Intensity Zonation Map of China (1990), it has been found that the two are roughly similar; though they are somewhat different for some localities, each has its own reasonableness.展开更多
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance...Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.展开更多
A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original i...A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original investment, disaster losses and maintenance cost, the integral stiffness, the total ductility, the construction period, and so on. A Three-Scale Fuzzy Analytical Hierarchy process is proposed by introducing the Three-Scale Analytical Hierarchy process and the trapezoid fuzzy number. The result of a calculation example shows that the T-FAHP is practical.展开更多
In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by d...In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.展开更多
We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relations...We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relationship partitions in China,based on the major and minor axis ellipse models,and the area and the major axis radius,respectively.The two models are applied to the calculation of the intensity circle of the earthquake events with a magnitude M_(S)≥5.0 from 2008 to 2019,and the actual intensity is compared with the model intensity value as an indicator to verify the consistency between the actual intensity and the value from the empirical statistical model.Three real earthquake results are selected to calculate the major and minor axis and area of the ellipse using the two intensity attenuation relationship models.After comparison,we summarize the deviation characteristics of the intensity value,and put forward corresponding improvement suggestions.展开更多
To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for ...To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.展开更多
The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthqu...The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The system-atic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spec- trum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.展开更多
This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and tradi...This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and traditional intensity-monitoring instruments have been deployed with complementary functions to implement hybrid networking.The low-cost MEMS network can continuously monitor areas at high risk of earthquakes at a high resolution.Moreover,it can quickly collect the parameters of earthquakes and records of the near-field acceleration of strong earthquakes.It can be also used to rapidly generate earthquake intensity reports and provide early warning of earthquakes.We used the MEMS sensors for the first time in 2016,and it has helped promote the development and application of seismic intensity instruments since then.展开更多
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in...According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.展开更多
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
The quantitative assessment of seismic hazard of Uzbekistan has been examined,and new maps of seismic zoning has been developed.Quasihomogeneous seismological areas and seism-generating zones are considered as seismic...The quantitative assessment of seismic hazard of Uzbekistan has been examined,and new maps of seismic zoning has been developed.Quasihomogeneous seismological areas and seism-generating zones are considered as seismic sources,based on the analysis of seismotectonic data.The seismological parametrization of seismic sources has been carried out,including determination of parameters of earthquake’s reoccurrence for different power levels,seismic potential and a predominant type motion in the source of occurring earthquakes.The reoccurrence parameters of seismic sources were both determined by directly from Gutenberg-Richter dependence law and using summation and distribution methods.Setting were conducted separately for a sample of strong(M≥5)and weak(M<5)earthquakes.The seismic potential Mmax of seismic active zones was determined by seismological and seismotectonic methods.The predominant type of movement in the faulting for each seismic source is reverse fault.Regional regularities of seismic intensity attenuation with distance of different power levels are determined.The seismic hazard is expressed in points of a macro seismic scale,in velocities and accelerations of ground motions,and it is characterized by calculated seismic intensity with the set probability(P=0.9,P=0.95,P=0.98 and P=0.99)not exceed within 50 years in the constructed maps.In seismic zoning map,the seismic intensity was in average soil conditions.The developed complex of maps considers a number of uncertainties of the input parameters in relation to both incompleteness of initial seismological and seismotectonic data,as well the probabilistic nature of seismic process and seismic intensity.The factors of uncertainty of the input parameters are taken into account by constructing a logic tree.The constructed maps of the general seismic zoning are intended for imple menting antiseismic actions in Uzbekistan.展开更多
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and int...Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.展开更多
基金Specialized Research Fund for the Doctoral Program of Higher Education (20030213042) and Natural Science Foundation of Heilongjiang Province (ZJG03-03).
文摘The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake damage to civil engineering and environmental structures. Also the seismic intensity is usually assigned by engineers and seismologists with one or two characteristic parameters of earthquake ground motions to reflect earthquake damage potential so as to be able to serve as an input earthquake load for seismic design of structures. So choosing a proper parameter to reflect the action of seismic intensity is the main objective of the research on physical measure of seismic intensity. However, since various kinds of structures have quite different damage mechanisms, there will exist great differences in damages to different structures located at the same area during the same earthquake. Particularly, in some cases, quite different damages have happened even to the structures of same kind due to many other factors such as different construction materials, different configurations or on the different types of sites where structures located. In addition, the ground motion parameters, which result in damage to structures, are not the single peak value of ground motion. Hence, this paper emphasizes that the research on new physical measure of seismic intensity should not only consider the structural characteristics but also take into account other parameters such as duration, energy of ground motion and so on. In particular, as the physical measures of intensity, different ground motion parameter should be adopted for different structures.
文摘The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.
文摘This paper presents the damage in the meizoseismal region of the M_S8.0 Wenchuan earthquake,Sichuan,China,and the seismic intensities determined according to "the Chinese Seismic Intensity Scale",and discusses briefly the types of earthquake-generating faults and some features of seismic damage.
基金funded by the project of Xinjiang Historical Earthquake Disaster Data Analysis ( CEA_EDEM-201016)
文摘By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of the data. The author summarized the seismic intensity attenuation laws in the Xinjiang region with the multiple regression fitting method. The intensity attenuation function of the elliptical model was provided and the fitting results in different periods and areas were compared. Finally, the intensity attenuation relationship in the Xinjiang region was obtained by the method of constraining the start and end of the attenuation curves.
文摘An M=6.0 earthquake occurred on February 23, 2001 in the western Sichuan Province, China. The macro seismic epicenter situated in the high mountain-narrow valley region between Yajiang and Kangding counties. According to field investigation in the region, the intensity of epicentral area reached VIII and the areas with intensity VIII, VII and VI are 180 km2, 1 472 km2 and 3 998 km2, respectively. The isoseismals are generally in elliptic shape with major axis trending near N-S direction. The earthquake destroyed many buildings and produced some phenomena of ground failure and mountainous disasters in the area with intensity VIII. This event may be resulted from long-term activities of the Litang fault and Yunongxi fault, two main faults in the western Sichuan. The movements between the main faults made the crust stress adjusted and concentrated, and finally the earthquake on a secondary fault in the block released a quite large energy.
基金supported by the Director of Foundation of the Institute of Seismology,China Earthquake Administration(IS201016030)
文摘A new type of seismic intensity meter based on MEMS accelerometer is introduced. It employs STM32FI07 as the data processing core and detects the changes of acceleration with triaxial MEMS LIS344ALH and uses ADS1248 for 24 bit data sampling. The test on vibration table shows that the linearity of the meter is δL = ± 1.4% , and the sensitivity is Kc = 0.9671V/g with zero deviation of 0.0043 g. The seismic intensity meter has the advantages of simple structure and stable performance and it is appropriate for intensive layout on a large scale.
文摘Aim of this article, is to present a methodology for extracting macroseismic intensity information and producing seismic intensity maps from VGI (volunteered geographic information). As a VGI source for obtaining and assessing macroseismic observations, the authors chose twitter. Our methodology is validated in two recent earthquakes occurred in Greece: the January 26, 2014 ML = 5.8 in Kefallinia, and the November 17, 2014 ML = 5.2 in Evoikos. Twitter data published within the first 6 h, 12 h, 24 h and 48 h after the earthquake occurrence were analyzed to develop seismic intensity maps. Those maps were evaluated through intensity maps for the same earthquakes, published by international institutes. Evaluation results provide a strong empiric evidence for the credibility of our methodology, the accuracy of the produced seismic intensity maps and accentuate VGI, generated by twitter, as an adequate alternative source for collecting macroseismic information.
基金supported by the Fundamental Research Funds in the Institute of Earthquake Science,China Earthquake Administration(No.2020IESLZ05)the National Key R&D Program of the Republic of China(Nos.2017YFC1500906 and 2018YFC0603500)the National Natural Science Foundation of China(Nos.41922025 and41874062)。
文摘This study focuses on rapidly determining seismic intensity maps of earthquakes because it offers fundamental information for effective emergency rescue and subsequent scientific research,and remains challenging to accurately determine seismic intensity map in regions with sparse instrumental observations.Here we applied a novel method that consisted of array technology(backprojection),ground-motion prediction equations,and site corrections,to estimate the seismic intensity maps of the 2021 Mw 7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.We used seismic data recorded at European stations to back-project the source processes of the 2021 Mw7.3 Madoi,Qinghai and the Mw 6.1 Yangbi,Yunnan,China earthquakes.The back-projected energy radiations were then used as subevents or used to define the fault geometry.Summing the contributions of each subevent or estimating the shortest distances from each site to the rupture fault,we obtained the ground motion(PGA and PGV)for each site under rock site conditions.The estimated ground motions were corrected at each site for local site amplification according to the Vs30 database.Our estimated seismic intensity maps and field reports showed high similarity,which further validated the effectiveness of the novel approach,and pushed the limit of earthquake size down to~M 6.Such efforts would substantially help in the fast and accurate evaluation of earthquake damage,and precise rescue efforts.
文摘With the central part of Shanxi Province as an example, this paper studied seismic intensity zonation directly by use of the response intensity of historical earthquakes. From the result, some conclusions can be drawn as follows: ① For areas rich in data of historical earthquakes, the seismic intensity zonation map with probabilistic meanings can be compiled by use of the statistical features of the response intensity of sites; ② When determining the length of time for statistics, the completeness of response intensity data and the inhomogeneity of regional seismic activities should be fully considered; ③ By comparing the seismic intensity zonation result for recurrence interval of 500 years with the new Seismic Intensity Zonation Map of China (1990), it has been found that the two are roughly similar; though they are somewhat different for some localities, each has its own reasonableness.
基金supported by Grants from the National Natural Science Foundation of China(42004010)the Beijing Natural Science Foundation(8204077)。
文摘Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.
文摘A multi-objective lectotype optimization model based on site conditions and seismic fortification intensity is presented for mid-highrise residential buildings taking into account multiple items such as the original investment, disaster losses and maintenance cost, the integral stiffness, the total ductility, the construction period, and so on. A Three-Scale Fuzzy Analytical Hierarchy process is proposed by introducing the Three-Scale Analytical Hierarchy process and the trapezoid fuzzy number. The result of a calculation example shows that the T-FAHP is practical.
文摘In the past several years, from May 12, 2008 Wenchuan Mw8.0 earthquake in China to March 11, 2011 off the Pacific coast of Northeastern Mw9.0 earthquake in Japan, the world witnessed catastrophic disasters caused by destructive earthquakes. The earthquake posed a great threat to the development of society and economy, especially in the developing countries such as China. In order to reduce the losses in peoples life and properties in maximum possibilities, there were a lots of technologies had been researched and developed, among them the earthquake early warning system (EEWS) and rapid seismic instrumental intensity report (RSIIP) are the two of the state-of-the-art technologies for the purpose. They may be used to minimize property damage and loss of life and to aid emergency response after a destructive earthquake.
基金sponsored by the special fund of the Institute of earthquake forecasting,China Earthquake Administration(2020LNEF03)China Earthquake Networks Center Youth Fund(QNJJ202105).
文摘We collect the isoseismal data of 488 earthquakes in western China and 182 earthquakes in eastern China after 1900.The least square method is used to establish two models of the seismic intensity attenuation relationship partitions in China,based on the major and minor axis ellipse models,and the area and the major axis radius,respectively.The two models are applied to the calculation of the intensity circle of the earthquake events with a magnitude M_(S)≥5.0 from 2008 to 2019,and the actual intensity is compared with the model intensity value as an indicator to verify the consistency between the actual intensity and the value from the empirical statistical model.Three real earthquake results are selected to calculate the major and minor axis and area of the ellipse using the two intensity attenuation relationship models.After comparison,we summarize the deviation characteristics of the intensity value,and put forward corresponding improvement suggestions.
基金National Key Research and Development Program of China(No.2022YFC3004300)the National Natural Science Foundation of China(No.52378475).
文摘To study the ground motion intensity measures(IMs)suitable for the design of seismic performance with a focus on longitudinal resistance in tunnel structures,21 different seismic intensity parameters are selected for nonlinear calculation and analysis of tunnel structures,in order to determine the optimal IM for the longitudinal seismic performance of tunnel structures under different site conditions.An improved nonlinear beam-spring model is developed to calculate the longitudinal seismic response of tunnels.The PQ-Fiber model is used to simulate the longitudinal nonlinear behavior of tunnel structures and the tangential interactions between the tunnel and the soil is realized by load in the form of moment.Five different site types are considered and 21 IMs is evaluated against four criteria:effectiveness,practicality,usefulness,and sufficiency.The results indicate that the optimal IMs are significantly influenced by the site conditions.Specifically,sustained maximum velocity(V_(SM))emerges as the optimal IM for circular tunnels in soft soil conditions(CaseⅠsites),peak ground velocity(V PG)is best suited for CaseⅡsites,sustained maximum acceleration(A_(SM))is ideal for both CaseⅢand CaseⅤsites,and peak ground acceleration(A PG)for CaseⅣsites.As site conditions transition from CaseⅠto CaseⅤ,from soft to hard,the applicability of acceleration-type intensity parameters gradually decreases,while the applicability of velocity-type intensity parameters gradually increases.
基金National Key Technologies Research and Development Program (2006BAC13B01-0604)Social Welfare Re-search Program from Ministry of Science and Technology of China (2005DIB3J119)
文摘The Sichuan and adjacent areas is divided into southwest China region (SWCR) and Sichuan Basin region (SCBR) according to tectonic backgrounds and seismic damage distribution features. 96 modem destructive earthquakes in SWCR and 40 in SCBR are gathered respectively. All their magnitude parameters are checked. Based on the statistic relations between epicentral intensity and magnitude as well as relation between sensible radius and magnitude, the near and far field seismic intensity attenuation features are represented and controlled. And then the seismic intensity attenuation relations along major axis, minor axis and mean axis are established separately. The system-atic deviations of surface wave magnitude between China seismograph network and U.S. seismograph network are considered in this paper. By making use of the new attenuation relations of bedrock horizontal ground acceleration response spectrum in west U.S., the attenuation relations of bedrock horizontal ground acceleration response spec- trum in SWCR and SCBR are digital transformed based on the attenuation model considering acceleration saturation of distance and magnitude in near field.
文摘This paper provides a brief introduction to the application of the sensor monitoring network of micro-electro-mechanical systems(MEMS)to Zhejiang province.In the Wenzhou Shanxi reservoir and other areas,MEMS and traditional intensity-monitoring instruments have been deployed with complementary functions to implement hybrid networking.The low-cost MEMS network can continuously monitor areas at high risk of earthquakes at a high resolution.Moreover,it can quickly collect the parameters of earthquakes and records of the near-field acceleration of strong earthquakes.It can be also used to rapidly generate earthquake intensity reports and provide early warning of earthquakes.We used the MEMS sensors for the first time in 2016,and it has helped promote the development and application of seismic intensity instruments since then.
基金National Science Foundation of China Under Grant No.90815025&51178249the National Key Technologies R&D Program Under Grant No.2009BAJ28B01&2006BAJ03A02-01+1 种基金Tsinghua University Research Funds No.2010THZ02-1the Program for New Century Excellent Talents in University
文摘According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金Institute of Seismology,Academy of Science of the Republic of Uzbekistan Grant number is FA-F8-007
文摘The quantitative assessment of seismic hazard of Uzbekistan has been examined,and new maps of seismic zoning has been developed.Quasihomogeneous seismological areas and seism-generating zones are considered as seismic sources,based on the analysis of seismotectonic data.The seismological parametrization of seismic sources has been carried out,including determination of parameters of earthquake’s reoccurrence for different power levels,seismic potential and a predominant type motion in the source of occurring earthquakes.The reoccurrence parameters of seismic sources were both determined by directly from Gutenberg-Richter dependence law and using summation and distribution methods.Setting were conducted separately for a sample of strong(M≥5)and weak(M<5)earthquakes.The seismic potential Mmax of seismic active zones was determined by seismological and seismotectonic methods.The predominant type of movement in the faulting for each seismic source is reverse fault.Regional regularities of seismic intensity attenuation with distance of different power levels are determined.The seismic hazard is expressed in points of a macro seismic scale,in velocities and accelerations of ground motions,and it is characterized by calculated seismic intensity with the set probability(P=0.9,P=0.95,P=0.98 and P=0.99)not exceed within 50 years in the constructed maps.In seismic zoning map,the seismic intensity was in average soil conditions.The developed complex of maps considers a number of uncertainties of the input parameters in relation to both incompleteness of initial seismological and seismotectonic data,as well the probabilistic nature of seismic process and seismic intensity.The factors of uncertainty of the input parameters are taken into account by constructing a logic tree.The constructed maps of the general seismic zoning are intended for imple menting antiseismic actions in Uzbekistan.
文摘Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.