The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif...The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.展开更多
The seismic performance of“added stories isolation”(ASI)systems are investigated for 12-story moment resisting frames.The newly added and isolated upper stories on the top of the existing structure are rolled to act...The seismic performance of“added stories isolation”(ASI)systems are investigated for 12-story moment resisting frames.The newly added and isolated upper stories on the top of the existing structure are rolled to act as a large tuned mass damper(TMD)to overcome the limitation of the size of tuned mass,resulting to“12+2”and“12+4”stories building configurations.The isolation layer,as a core design strategy,is optimally designed based on optimal TMD design principle,entailing the insertion of passive flexible laminated rubber bearings to segregate two or four upper stories from a conventionally constructed lower superstructure system.Statistical performance metrics are presented for 30 earthquake records from the 3 suites of the SAC project.Time history analyses are used to compute various response performances and reduction factors across a wide range of seismic hazard intensities.Results show that ASI systems can effectively manage seismic response for multi-degree-of freedom(MDOF)systems across a broader range of ground motions without requiring burdensome extra mass.Specific results include the identification of differences in the number of added story by which the suggested isolation systems remove energy.展开更多
文摘The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.
文摘The seismic performance of“added stories isolation”(ASI)systems are investigated for 12-story moment resisting frames.The newly added and isolated upper stories on the top of the existing structure are rolled to act as a large tuned mass damper(TMD)to overcome the limitation of the size of tuned mass,resulting to“12+2”and“12+4”stories building configurations.The isolation layer,as a core design strategy,is optimally designed based on optimal TMD design principle,entailing the insertion of passive flexible laminated rubber bearings to segregate two or four upper stories from a conventionally constructed lower superstructure system.Statistical performance metrics are presented for 30 earthquake records from the 3 suites of the SAC project.Time history analyses are used to compute various response performances and reduction factors across a wide range of seismic hazard intensities.Results show that ASI systems can effectively manage seismic response for multi-degree-of freedom(MDOF)systems across a broader range of ground motions without requiring burdensome extra mass.Specific results include the identification of differences in the number of added story by which the suggested isolation systems remove energy.