Most published studies on inelastic earthquake response of non-symmetric buildings are based on simplified inelastic, highly idealized models, while general conclusions regarding the inelastic torsional response of mu...Most published studies on inelastic earthquake response of non-symmetric buildings are based on simplified inelastic, highly idealized models, while general conclusions regarding the inelastic torsional response of multistory building are still lacking. This paper aims to provide a useful contribution in the study of the torsional response of real irregular buildings. To this aim, the manuscript reports the comprehensive study on the seismic vulnerability of an irregular RC building: the hospital building ofAvezzano (L'Aquila Italy). For this multi-story building, which is irregular in both plan and elevation, the application of nonlinear static evaluation procedures is by no means straightforward. The study proposes a nonlinear static procedure based on pushover analysis under the multimodal distribution of lateral loads and a capacity spectrum method. This pushover procedure accounts for mass distribution, higher modes contribution and mode-shapes correlation. Furthermore, due to its non-iterative feature, it avoids problems of non-convergence and multiple solutions of the conventional capacity spectrum method. Applied to a real case study, the procedure is used to investigate, in a 3D plan irregular building, the sensitivity of torsional inelastic response to lateral force distribution, higher modes contribution, accidental eccentricity and controlled point for monitoring the target displacement.展开更多
Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional di...Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional disruptions, as nonstructural systems comprise the majority of building investment and are essential to building operations. A better understanding of the expected overall seismic performance of code-compliant buildings is needed. This study investigates the seismic performance of a conventional building. A 16-storey steel office building was designed using a modern seismic structural code(Eurocode 8). This study is the first to assess in detail the substantial earthquake repair costs expected in a modern Eurocode concentric braced frame structure, considering nonstructural systems with the FEMA P-58 procedure. The breakdown of total repair costs by engineering demand parameter and by fragility group is novel. The seismic performance assessment indicated that substantial earthquake repair costs are expected. Limitations of the Eurocode nonstructural damage methodology were revealed in a novel manner using FEMA P-58, as the prescribed drift limits did not minimize nonstructural repair costs. These findings demonstrate the need for design procedures that improve nonstructural seismic performance. The study results provide a benchmark on which to evaluate retrofit alternatives for existing buildings and design options for new structures.展开更多
The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance ...The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance of moment-resisting frames with these structural members. The paper describes an experimental campaign where a total of 36 specimens were tested, resorting to a novel testing setup, aimed at reducing both the preparation time and cost of the test specimens. Different geometrical and material parameters were considered, namely cross-section type, cross-section slenderness, aggregate replacement ratio, axial load level and lateral loading type. The members were tested under both monotonic and cyclic lateral loading, with different levels of applied axial loading. The test results show that the bending behaviour of CFST elements is highly dependent on the steel tube properties and that the type of infill does not have a significant influence on the flexural behaviour of the member. It is also found that Eurocode 4 is conservative in predicting the flexural capacity of the tested specimens. Additionally, it was found that the seismic design of composite moment- resisting frames with CFST columns, according to Eurocode 8, not only leads to lighter design solutions but also to enhanced seismic performance in comparison to steel frames.展开更多
文摘Most published studies on inelastic earthquake response of non-symmetric buildings are based on simplified inelastic, highly idealized models, while general conclusions regarding the inelastic torsional response of multistory building are still lacking. This paper aims to provide a useful contribution in the study of the torsional response of real irregular buildings. To this aim, the manuscript reports the comprehensive study on the seismic vulnerability of an irregular RC building: the hospital building ofAvezzano (L'Aquila Italy). For this multi-story building, which is irregular in both plan and elevation, the application of nonlinear static evaluation procedures is by no means straightforward. The study proposes a nonlinear static procedure based on pushover analysis under the multimodal distribution of lateral loads and a capacity spectrum method. This pushover procedure accounts for mass distribution, higher modes contribution and mode-shapes correlation. Furthermore, due to its non-iterative feature, it avoids problems of non-convergence and multiple solutions of the conventional capacity spectrum method. Applied to a real case study, the procedure is used to investigate, in a 3D plan irregular building, the sensitivity of torsional inelastic response to lateral force distribution, higher modes contribution, accidental eccentricity and controlled point for monitoring the target displacement.
文摘Recent earthquakes have revealed that conventional seismic design philosophy allows for large levels of nonstructural damage. Nonstructural earthquake damage results in extensive repair costs and lengthy functional disruptions, as nonstructural systems comprise the majority of building investment and are essential to building operations. A better understanding of the expected overall seismic performance of code-compliant buildings is needed. This study investigates the seismic performance of a conventional building. A 16-storey steel office building was designed using a modern seismic structural code(Eurocode 8). This study is the first to assess in detail the substantial earthquake repair costs expected in a modern Eurocode concentric braced frame structure, considering nonstructural systems with the FEMA P-58 procedure. The breakdown of total repair costs by engineering demand parameter and by fragility group is novel. The seismic performance assessment indicated that substantial earthquake repair costs are expected. Limitations of the Eurocode nonstructural damage methodology were revealed in a novel manner using FEMA P-58, as the prescribed drift limits did not minimize nonstructural repair costs. These findings demonstrate the need for design procedures that improve nonstructural seismic performance. The study results provide a benchmark on which to evaluate retrofit alternatives for existing buildings and design options for new structures.
文摘The main objective of the research presented in this paper is to study the bending behaviour of Concrete Filled Steel Tube (CFST) columns made with Rubberized Concrete (RuC), and to assess the seismic performance of moment-resisting frames with these structural members. The paper describes an experimental campaign where a total of 36 specimens were tested, resorting to a novel testing setup, aimed at reducing both the preparation time and cost of the test specimens. Different geometrical and material parameters were considered, namely cross-section type, cross-section slenderness, aggregate replacement ratio, axial load level and lateral loading type. The members were tested under both monotonic and cyclic lateral loading, with different levels of applied axial loading. The test results show that the bending behaviour of CFST elements is highly dependent on the steel tube properties and that the type of infill does not have a significant influence on the flexural behaviour of the member. It is also found that Eurocode 4 is conservative in predicting the flexural capacity of the tested specimens. Additionally, it was found that the seismic design of composite moment- resisting frames with CFST columns, according to Eurocode 8, not only leads to lighter design solutions but also to enhanced seismic performance in comparison to steel frames.