Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Prog...Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Program Generator (PFEPG). The computational algorithms of the numerical simulation of the meso-structure of concrete specimens were studied. Taking into account damage evolution, static preload, strain rate effect, and the heterogeneity of the meso-structure of dam concrete, the fracture processes of damage evolution and configuration of the cracks can be directly simulated. In the seismic response analysis of ADs, all the following factors are involved, such as the nonlinear contact due to the opening and slipping of the contraction joints, energy dispersion of the far-field foundation, dynamic interactions of the dam-foundation- reservoir system, and the combining effects of seismic action with all static loads. The correctness, reliability and efficiency of the two parallel computational programs are verified with practical illustrations.展开更多
The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-wa...The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-water- rock foundation.The model is applied to the seismic response analysis of an arch dam with a height of 292m designed to a seismic intensity of IX.It is shown that consideration of the water compressibility clearly decreases the stress responses at key positions of the dam,while the added mass model gives a conservative estimate.展开更多
Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformabl...Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.展开更多
In this paper, Endurance Time Analysis (ETA) method which is a new time-history based dynamic pushover procedure is introduced and its application in linear analysis of concrete arch dams is investigated. In this me...In this paper, Endurance Time Analysis (ETA) method which is a new time-history based dynamic pushover procedure is introduced and its application in linear analysis of concrete arch dams is investigated. In this method the structure is subjected to gradually intensifying acceleration functions and its performance is evaluated based on the length of the time duration that can satisfy required performance criteria. For this purpose Dez arch dam is selected as case study, fluid-structure interaction is taken into account and F.E. model of the system is excited in three performance levels. ETA method gives an approximation of maximum response at the equivalent target time, resulted from analyzing the system based on natural records. Extracted results are displacement, velocity and acceleration of the crest at crown cantilever. Results show using of ETA method can reduce at least 50% in number of analyses and 70% in total time of analyses at the current case. Furthermore, it is found that although the results of the ETA are not exactly consistent with the results of time-history analyses using real ground motions, errors are reasonable and ETA can identify performance levels of the dam with acceptable accuracy.展开更多
In the paper,the added tangential nonlinear springs are introduced to represent the effects of one-way and two-way shear keys. The added tangential stiffness coefficient is relative to the joint opening and the relati...In the paper,the added tangential nonlinear springs are introduced to represent the effects of one-way and two-way shear keys. The added tangential stiffness coefficient is relative to the joint opening and the relative tangential movement and determined numerically by using a refined model of shear keys.The user subroutine of nonlinear spring elements has been implemented into ABAQUS program.The seismic responses of an arch-gravity dam are mainly examined.It is shown by the results that a significant increase of about 17%-30%in joint opening can be observed for the dam with one-way shear keys;the two-way shear keys are beneficial to restrain the sliding displacement along both the radial and vertical directions,whereas the one-way shear keys mainly restrain the displacement along the radial direction;for the dam with shear keys,the maximum arch stress is increased,the cantilever stress is reduced,and the location of the maximum cantilever stress is also moved from the dam heel to the midheight of the cantilever.展开更多
To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the ma...To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the major obstacles to the seismic catastrophe assessment of high arch dams which focused on clearly defining the Maximum Credible Earthquake (MCE) and reasonably selecting its site-specific seismic input parameters as well as quantitatively evaluating the limit state of dam-breach for designers are emphasized. Some breakthrough progress with pending problems is presented, such as to adopt more reasonable seismic input parameters based on seismic hazard evaluation of dam site; to develop model and method more fit in with the reality for non-linear seismic analysis of dam-foundation-reservoir system. The ideals of further improvement both in evaluating the MCE and defining the quantitative index of its performance objective are discussed, including how to use semi-empirical method of simulating strong ground motion near fault, how to solve the long-standing problem of stress singularity at dam heel, and how to investigate dynamic behaviors of fully-graded dam concrete through dynamic tests and 3-dimensional meso-mechanics analysis checked by CT technique.展开更多
基金National Natural Science Foundation of China Under Grant No.90510017
文摘Parallel computation programs are developed for three-dimensional meso-mechanics analysis of fully-graded dam concrete and seismic response analysis of high arch dams (ADs), based on the Parallel Finite Element Program Generator (PFEPG). The computational algorithms of the numerical simulation of the meso-structure of concrete specimens were studied. Taking into account damage evolution, static preload, strain rate effect, and the heterogeneity of the meso-structure of dam concrete, the fracture processes of damage evolution and configuration of the cracks can be directly simulated. In the seismic response analysis of ADs, all the following factors are involved, such as the nonlinear contact due to the opening and slipping of the contraction joints, energy dispersion of the far-field foundation, dynamic interactions of the dam-foundation- reservoir system, and the combining effects of seismic action with all static loads. The correctness, reliability and efficiency of the two parallel computational programs are verified with practical illustrations.
基金National Natural Science Foundation of China for Distinguished Young Scholar of China Under Grant No.50325826National Natural Science Foundation of China Under Grant No.50309005Science & Technology Development Project of Education Committee of Beijing Under Grant No.KM200310005017
文摘The effect of water compressibility on the seismic responses of arch dams is not well understood.In this paper,a numerical model is developed with rigorous representation of the dynamic interaction between arch dam-water- rock foundation.The model is applied to the seismic response analysis of an arch dam with a height of 292m designed to a seismic intensity of IX.It is shown that consideration of the water compressibility clearly decreases the stress responses at key positions of the dam,while the added mass model gives a conservative estimate.
基金National Natural Science Foundation of China under Grant No.90510017
文摘Based on a Chinese national high arch dam located in a meizoseismal region, a nonlinear numerical analysis model of the damage and failure process of a dam-foundation system is established by employing a 3-D deformable distinct element code(3DEC) and its re-development functions. The proposed analysis model considers the dam-foundation-reservoir coupling effect, infl uence of nonlinear contact in the opening and closing of the dam seam surface and abutment rock joints during strong earthquakes, and radiation damping of far fi eld energy dissipation according to the actual workability state of an arch dam. A safety assessment method and safety evaluation criteria is developed to better understand the arch dam system disaster process from local damage to ultimate failure. The dynamic characteristics, disaster mechanism, limit bearing capacity and the entire failure process of a high arch dam under a strong earthquake are then analyzed. Further, the seismic safety of the arch dam is evaluated according to the proposed evaluation criteria and safety assessment method. As a result, some useful conclusions are obtained for some aspects of the disaster mechanism and failure process of an arch dam. The analysis method and conclusions may be useful in engineering practice.
文摘In this paper, Endurance Time Analysis (ETA) method which is a new time-history based dynamic pushover procedure is introduced and its application in linear analysis of concrete arch dams is investigated. In this method the structure is subjected to gradually intensifying acceleration functions and its performance is evaluated based on the length of the time duration that can satisfy required performance criteria. For this purpose Dez arch dam is selected as case study, fluid-structure interaction is taken into account and F.E. model of the system is excited in three performance levels. ETA method gives an approximation of maximum response at the equivalent target time, resulted from analyzing the system based on natural records. Extracted results are displacement, velocity and acceleration of the crest at crown cantilever. Results show using of ETA method can reduce at least 50% in number of analyses and 70% in total time of analyses at the current case. Furthermore, it is found that although the results of the ETA are not exactly consistent with the results of time-history analyses using real ground motions, errors are reasonable and ETA can identify performance levels of the dam with acceptable accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.50539030,50779011,11132003)the National Basic Research Program of China("973"Project)(Grant No.2007CB714104)the Innovative Project for Graduate Students of Jiangsu Province (Grant No.CX10B_202Z)
文摘In the paper,the added tangential nonlinear springs are introduced to represent the effects of one-way and two-way shear keys. The added tangential stiffness coefficient is relative to the joint opening and the relative tangential movement and determined numerically by using a refined model of shear keys.The user subroutine of nonlinear spring elements has been implemented into ABAQUS program.The seismic responses of an arch-gravity dam are mainly examined.It is shown by the results that a significant increase of about 17%-30%in joint opening can be observed for the dam with one-way shear keys;the two-way shear keys are beneficial to restrain the sliding displacement along both the radial and vertical directions,whereas the one-way shear keys mainly restrain the displacement along the radial direction;for the dam with shear keys,the maximum arch stress is increased,the cantilever stress is reduced,and the location of the maximum cantilever stress is also moved from the dam heel to the midheight of the cantilever.
基金Supported by the National National Science Foundation of China (Grant No. 90510017)
文摘To prevent possible seismic catastrophe, naturally, its assessment is deeply concerned over in China as a series of arch dams of about 300 m high will be constructed in the severe seismic regions. In this paper the major obstacles to the seismic catastrophe assessment of high arch dams which focused on clearly defining the Maximum Credible Earthquake (MCE) and reasonably selecting its site-specific seismic input parameters as well as quantitatively evaluating the limit state of dam-breach for designers are emphasized. Some breakthrough progress with pending problems is presented, such as to adopt more reasonable seismic input parameters based on seismic hazard evaluation of dam site; to develop model and method more fit in with the reality for non-linear seismic analysis of dam-foundation-reservoir system. The ideals of further improvement both in evaluating the MCE and defining the quantitative index of its performance objective are discussed, including how to use semi-empirical method of simulating strong ground motion near fault, how to solve the long-standing problem of stress singularity at dam heel, and how to investigate dynamic behaviors of fully-graded dam concrete through dynamic tests and 3-dimensional meso-mechanics analysis checked by CT technique.