To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corres...To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.展开更多
This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine th...This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action.The damping modification of the SATMD is carried out according to the proposed OTE algorithm,which is formulated based on analysis of the structural movement under external excitations,and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted.The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed.Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.展开更多
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure character...Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.展开更多
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geother...On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China.展开更多
A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tanch...A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tancheng-Lujiang fault zones, divide the upper crust of North China into three upper crustal terranes and nine bolcks. There are distinct differences in velocity and depth distributions, which reflects Cenozoic block faulting in North China in the process of formation of the deep structure. The upper crust shows the features of transition in isostatic adjustment. The existence of a low-velocity layer in the middle crust is characteristic of the crustal structure in North China. There seems to be an increase of rheology of the rocks in the lower crust and a persistence of stable regional stress field. The patterns of the Moho on two sides of the Yanshan-Taihang Mountains are different. The relief of the Moho around Beijing, Shijiazhuang and Guangrao where the deep faults join together shows a quadrantal distribution in some degree. The dynamic sources for seismic activity are the NE-SW horizontal compression and the diapirism of the upper mantle. The middle and upper crust, especially the layered block structure has the most significant effects on seismicity, and the occurrence of earthquakes is more closely related to them than to the Moho.展开更多
Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Becau...Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.展开更多
The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model...The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively.展开更多
Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces w...Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.展开更多
Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their...Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.展开更多
The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of fo...The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of forming of focal area. However,spatial clustering of seismic events rises at the latest stage.展开更多
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o...Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.展开更多
A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homo...A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free- field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.展开更多
This paper introduces a new way of system identification of dynamic based on artificial neural networks (ANN) and explains concretely how to predict seismic response of structures by ANN in a practical example. This ...This paper introduces a new way of system identification of dynamic based on artificial neural networks (ANN) and explains concretely how to predict seismic response of structures by ANN in a practical example. This paper identifies the structural model of a shear system by the feed forward network of the BP (back propagation) algorithm. First of all, the BP network described in this paper has been trained by practical seismic waves and the corresponding imitated seismic response. Then the seismic response of structures under other seismic excitation will be predicted by BP network of ANN that had been trained. The new ANN can identify the dynamical character and predict dynamical response of structures exactly. This paper also discusses the effects of network topology and input layer elements on the network learning and prediction, etc.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduct...Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile boundary is provided.展开更多
With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily,...With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily, there are more and more high-rise buildings, its density is also increasing. With the increasing number trend of high-rise building development, anti-seismic building requirement as an important part of architectural design is worthy of our exploration and study. Seismic resistance has become an important subject of engineering design. This paper will discuss the technical principle of seismic design in building structure design, so as to optimize the seismic design of high-rise building structure better.展开更多
High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitori...High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.展开更多
The importance of developing high-resolution seismic models to improve understanding of tectonic processes and enhance seismic hazard mitigation programs,along with the rapid expansion of seismic coverage in China,cal...The importance of developing high-resolution seismic models to improve understanding of tectonic processes and enhance seismic hazard mitigation programs,along with the rapid expansion of seismic coverage in China,called for a seismological reference model to be established in China.The China Seismological Reference Model(CSRM)project was initiated by the National Natural Science Foundation of China with two primary goals:(1)the CSRM would serve as a primary source for the current state of seismological research in China,and(2)the seismic data and constraints used to construct the CSRM would be used as a backbone open-access cyberinfrastructure for future research in seismology.The CSRM project was also intended to promote data exchange and scientific collaboration in seismology in China.Accordingly,two parallel efforts of the project are being pursued:(1)construction of the CSRM,and(2)development of a CSRM product center.The CSRM is jointly constrained by various types of seismic constraints extracted from the seismic data recorded at 4511 seismic stations in continental China following a top-down approach,with the seismic structures in the shallower part of the Earth constrained first.Construction of the CSRM involves three preparation steps:(1)building datasets of various seismic constraints from the seismic data,(2)developing a method to incorporate the constraints of surface wave observations from regional earthquakes into the inversion of the seismic structure,and(3)constructing high-resolution pre-CSRM seismic models of the velocity structure in the shallow crust and the Pn-velocity structure in the uppermost mantle.In the final process,the CSRM will be constructed by jointly inverting all the seismic constraints using the pre-CSRM models as starting models or a priori structures.The CSRM product center(http://chinageorefmodel.org)archives and distributes three types of products:CSRM models,the Level 1 original seismic data used to extract seismic constraints in the construction of the CSRM,and Level 2 data on the seismic constraints derived from the Level 1 data and the inferred earthquake parameters in the construction of the CSRM.The CSRM product center has archived 141 TB of Level 1 data from 1120 permanent broadband stations in the China Seismic Network Center and 3391 temporary stations from various institutions and data centers around the world,as well as 140 GB of Level 2 data on various seismic constraints and inferred event parameters from the construction of the CSRM.The CSRM is expected to provide significant insights into the composition and tectonic dynamics in continental China and to enhance the capability of various seismic hazard mitigation programs in China from near real-time rapid determination of earthquake parameters to an earthquake early warning system.The CSRM could also provide guidance for focuses in future seismological research and the design of future active and passive seismic experiments in China.Several focuses are suggested for future seismological research in China,along with the building of a national cyberinfrastructure to sustain and expand the operations of the CSRM project.展开更多
基金Funded by National Natural Science Foundation of China under the Grant No.90715036Open Project of Jiangsu Key Laboratory of Structural Engineering (Grant No.ZD1004)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘To implement structural hybrid simulation independent of the control system of any testing equipment in civil engineering, an external command control approach is put forward. Several setup technologies and the corresponding API approaches are investigated to simultaneously combine numerical simulation with physical testing. Hybrid program technology is put forward and described in detail, using Visual C++ program to effectively and accurately control testing equipment and MATLAB program to implement numerical simulation with easy extension. The control program of testing equipment and numerical simulation program are integrated by calling MATLAB engine in Visual C++. A hybrid simulation about a full-scale six-story masonry structure is carried out. The testing results manifest that the external command control approach has the versatility because of simple hardware connection and control program independent on control software of testing equipment; powerful program function of Visual C++ and flexible program of MATLAB are integrated by hybrid program technology; hybrid simulation system provides a realistic and cost-effective testing platform that enables earthquake engineer researchers to accurately and efficiently capture the seismic performance of large or complex structures without having to carry out physical testing of the entire structure.
文摘This paper focuses on how to determine the instantaneous damping of the semi-active tuned mass damper (SATMD) with continuously variable damping.An off-and-towards-equilibrium (OTE) algorithm is employed to examine the control performance of the structure/SATMD system by considering the damping as an assumptive control action.The damping modification of the SATMD is carried out according to the proposed OTE algorithm,which is formulated based on analysis of the structural movement under external excitations,and the measured responses of the structure at every time instant. As examples two numerical simulations of a five-storey and a ten-storey shear structures with a SATMD on the roof are conducted.The effectiveness on vibration reduction of MDOF systems subjected to seismic excitations is discussed.Analysis results show that the behavior of the structure with a SATMD is significantly improved and the feasibility of applying the OTE algorithm to the structural control design of SATMD is also verified.
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金This reservoir research is sponsored by the National 973 Subject Project (No. 2001CB209).
文摘Seismic data structure characteristics means the waveform character arranged in the time sequence at discrete data points in each 2-D or 3-D seismic trace. Hydrocarbon prediction using seismic data structure characteristics is a new reservoir prediction technique. When the main pay interval is in carbonate fracture and fissure-cavern type reservoirs with very strong inhomogeneity, there are some difficulties with hydrocarbon prediction. Because of the special geological conditions of the eighth zone in the Tahe oil field, we apply seismic data structure characteristics to hydrocarbon prediction for the Ordovician reservoir in this zone. We divide the area oil zone into favorable and unfavorable blocks. Eighteen well locations were proposed in the favorable oil block, drilled, and recovered higher output of oil and gas.
基金supported by grants from the National Natural Science Foundation of China(No.40104003)China Post-doctoral Science Foundationthe Chinese Academy of Sciences K.C.Wong Post-doctoral Research Award
文摘On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China.
文摘A layered crustal block model of North China has been constructed based on large amount of data from seismic sounding carried out in recent two decades. Some deep fault zones, such as the Zhangjiakou.Penglai and Tancheng-Lujiang fault zones, divide the upper crust of North China into three upper crustal terranes and nine bolcks. There are distinct differences in velocity and depth distributions, which reflects Cenozoic block faulting in North China in the process of formation of the deep structure. The upper crust shows the features of transition in isostatic adjustment. The existence of a low-velocity layer in the middle crust is characteristic of the crustal structure in North China. There seems to be an increase of rheology of the rocks in the lower crust and a persistence of stable regional stress field. The patterns of the Moho on two sides of the Yanshan-Taihang Mountains are different. The relief of the Moho around Beijing, Shijiazhuang and Guangrao where the deep faults join together shows a quadrantal distribution in some degree. The dynamic sources for seismic activity are the NE-SW horizontal compression and the diapirism of the upper mantle. The middle and upper crust, especially the layered block structure has the most significant effects on seismicity, and the occurrence of earthquakes is more closely related to them than to the Moho.
基金supported by the National Natural Science Foundation of China(grant No.41572194)the Institute of Geology,China Earthquake Administration(grant No.IGCEA1604)the National Key Basic Research Program of China(grant No.2013CB733205)
文摘Objective The 2014 Ludian Mw6.1 earthquake in Yunnan occurred in a mountainous area with complex tectonics and topography, which caused serious damage as well as co-seismic landslides of an unusual large scale. Because the suspected seismogenic faults on the surface, distribution of aftershocks and focal mechanism solutions are not consistent, it remains difficult to determine what is the real causal fault or seismogenic structure for this event. Actually, it may imply the complicity of the seismic source at depth. In addition, the distribution of the co- seismic landslides also exhibits some diffusion that is different from general eases, likely associated with the seismic focus structure.
基金supported by the National Natural Science Foundation of China (No. 41174034)
文摘The firework algorithm(FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude(MW) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region,inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15,15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s,respectively.
基金Project DPC-ReLUIS 2005-2008, RL n.7 "Technologies for the isolation and control of structures and infrastructures"
文摘Theoretical and practical issues concerning the multi-faceted task of mitigating the latero-torsional seismic response of a prototypal frame structure with asymmetric mass distribution are approached, Chevron braces with embedded magnetorheological dampers acting on the interstory drift are used to ensure additional energy dissipation. The semi-active control strategy employed to govern the modification of the damper characteristics via feedback is based on the selection of optimal forces according to a H2/LQG criterion, with respect to which the actual forces are regulated by a clipped-optimal logic. A dynamic observer is used to estimate the state through a non-collocated placement of the acceleration sensors. Several aspects to be addressed throughout the complex process including the design, modelization, and implementation phases of semi-active protection systems are discussed. Finally, experimental results obtained to mitigate the motion induced by ground excitation in a large-scale laboratory prototype, simulating the seismic response of a two-story building, are summarized.
文摘Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.
文摘The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of forming of focal area. However,spatial clustering of seismic events rises at the latest stage.
文摘Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.
基金"Investigaciones Geotecnicas Solingral S.A"Departamento Administrativo de Ciencia,Tecnología e Innovación,COLCIENCIAS and from Universidad EAFIT through Research Grant No.1216-403-20372
文摘A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free- field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods.
文摘This paper introduces a new way of system identification of dynamic based on artificial neural networks (ANN) and explains concretely how to predict seismic response of structures by ANN in a practical example. This paper identifies the structural model of a shear system by the feed forward network of the BP (back propagation) algorithm. First of all, the BP network described in this paper has been trained by practical seismic waves and the corresponding imitated seismic response. Then the seismic response of structures under other seismic excitation will be predicted by BP network of ANN that had been trained. The new ANN can identify the dynamical character and predict dynamical response of structures exactly. This paper also discusses the effects of network topology and input layer elements on the network learning and prediction, etc.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
基金supported by"Proyecto Unidad Ejecutora IDEAN:Evolución geológica de los Andes y su impacto económico y ambiental"
文摘Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile boundary is provided.
文摘With the rapid development of China's economy, the modernization drive and the process of urbanization continue to advance, land for urban construction is becoming more and tenser and land prices are rising steadily, there are more and more high-rise buildings, its density is also increasing. With the increasing number trend of high-rise building development, anti-seismic building requirement as an important part of architectural design is worthy of our exploration and study. Seismic resistance has become an important subject of engineering design. This paper will discuss the technical principle of seismic design in building structure design, so as to optimize the seismic design of high-rise building structure better.
基金support from the National Natural Science Foundation of China(52025083 and U2139209)XPLORER PRIZE of New Cornerstone Science Foundation,the Shanghai Social Development Science and Technology Research Project(22dz1201400)the Shanghai Urban Digital Transformation Special Fund(202201033).
文摘High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures,including post-earthquake damage assessment,structural health monitoring,and seismic resilience assessment of buildings.To improve the accuracy and efficiency of structural response prediction,this study proposes a novel physics-informed deep-learning-based realtime structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy.The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model,thereby enabling higher-precision predictions.Experiments were conducted on a four-story masonry structure,an eleven-story reinforced concrete irregular structure,and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method.In addition,the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study.Furthermore,by conducting a comparative experiment,the impact of the range of seismic wave amplitudes on the prediction accuracy was studied.The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.
基金the NSFC has funded 40 research grants for studying the seismic structure beneath continental China, including a grant NSFC42250201 focusing on the CSRM project
文摘The importance of developing high-resolution seismic models to improve understanding of tectonic processes and enhance seismic hazard mitigation programs,along with the rapid expansion of seismic coverage in China,called for a seismological reference model to be established in China.The China Seismological Reference Model(CSRM)project was initiated by the National Natural Science Foundation of China with two primary goals:(1)the CSRM would serve as a primary source for the current state of seismological research in China,and(2)the seismic data and constraints used to construct the CSRM would be used as a backbone open-access cyberinfrastructure for future research in seismology.The CSRM project was also intended to promote data exchange and scientific collaboration in seismology in China.Accordingly,two parallel efforts of the project are being pursued:(1)construction of the CSRM,and(2)development of a CSRM product center.The CSRM is jointly constrained by various types of seismic constraints extracted from the seismic data recorded at 4511 seismic stations in continental China following a top-down approach,with the seismic structures in the shallower part of the Earth constrained first.Construction of the CSRM involves three preparation steps:(1)building datasets of various seismic constraints from the seismic data,(2)developing a method to incorporate the constraints of surface wave observations from regional earthquakes into the inversion of the seismic structure,and(3)constructing high-resolution pre-CSRM seismic models of the velocity structure in the shallow crust and the Pn-velocity structure in the uppermost mantle.In the final process,the CSRM will be constructed by jointly inverting all the seismic constraints using the pre-CSRM models as starting models or a priori structures.The CSRM product center(http://chinageorefmodel.org)archives and distributes three types of products:CSRM models,the Level 1 original seismic data used to extract seismic constraints in the construction of the CSRM,and Level 2 data on the seismic constraints derived from the Level 1 data and the inferred earthquake parameters in the construction of the CSRM.The CSRM product center has archived 141 TB of Level 1 data from 1120 permanent broadband stations in the China Seismic Network Center and 3391 temporary stations from various institutions and data centers around the world,as well as 140 GB of Level 2 data on various seismic constraints and inferred event parameters from the construction of the CSRM.The CSRM is expected to provide significant insights into the composition and tectonic dynamics in continental China and to enhance the capability of various seismic hazard mitigation programs in China from near real-time rapid determination of earthquake parameters to an earthquake early warning system.The CSRM could also provide guidance for focuses in future seismological research and the design of future active and passive seismic experiments in China.Several focuses are suggested for future seismological research in China,along with the building of a national cyberinfrastructure to sustain and expand the operations of the CSRM project.