The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake locat...The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.展开更多
Numerous shallow earthquakes, including 24 th August Amatrice, 26 th October Visso, and 30 th October Norcia earthquakes, ruptured the segments of Mount Vettore-Gorzano fault system in the central Apennines(Italy) in ...Numerous shallow earthquakes, including 24 th August Amatrice, 26 th October Visso, and 30 th October Norcia earthquakes, ruptured the segments of Mount Vettore-Gorzano fault system in the central Apennines(Italy) in 2016. In order to investigate the stress perturbation and triggering patterns among the earthquake sequences, we introduce a more realistic nonplanar coseismic fault geometry model, which improve the rupture model by assimilating relocated aftershocks and the GPS observations. We adopt the seismic slip inversion program of the steepest descent method(SDM) to create the detailed coseismic rupture models and optimize Coulomb Failure Stress model by varying the coefficient of friction and received fault parameters. The results indicate that the nonplanar fault geometry model is more reflective of the deep slip of the coseismic rupture than planar model. As evidenced by the coseismic Coulomb stress changes caused by the three mainshocks at different depth slices, the stress loading mainly distributes on the active fault zones and the stress changes can well explain the spatial distribution of aftershocks. The first large Amatrice mainshock accelerates the occurrence of the Mw 5.9 Visso and Mw 6.6 Norcia earthquakes, with the positive stress changes at the hypocenter exceeding the stress triggering threshold(0.010×10^(6) Pa) and up to 0.015×10^(6) and 0.257×10^(6) Pa, respectively. Furthermore, the Mw 5.9 Visso earthquake as well encourages the occurrence of the Mw 6.6 Norcia event with the increased stress changes of 0.052×10^(6) Pa on the hypocenter. It is concluded that the stress transfer and accumulation play crucial roles on the linkage triggering mechanism among the mainshock-mainshock and mainshockaftershocks. Noteworthily, the cumulative stress changes on the southwest segment of the Norcia Fault(NF), the southeast parts of the Montereale Fault System(MFS) and Mount Gorzano Fault(MGF) of the main regions are up to(1.5~3.5) ×10^(6) Pa. The cumulative stress changes have not been released sufficiently by aftershocks, which may increase the seismic hazard in those regions.展开更多
This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of visc...This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.展开更多
Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation t...Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.展开更多
A statistical analysis is done to study the spatio-temporai features of earthquake activity in the Tianshan seismic belt triggered by tide, based on Schuster's test. The data we choose is the ML ≥2. 0 earthquakes fr...A statistical analysis is done to study the spatio-temporai features of earthquake activity in the Tianshan seismic belt triggered by tide, based on Schuster's test. The data we choose is the ML ≥2. 0 earthquakes from January 1, 2010 to August 31, 2012 in eastern Tianshan, and the calculation is on tidal body stress. The results show that the p-value based on the time window smoothing of Schuster's test corresponds better with the strong earthquakes in the Tianshan seismic belt, especially for a long time before the November 1, 2011 Nilka Ms6. 0 earthquake, when the p-value of the Schuster's test was always lower than the threshold of 0. 05 for tidal trigger of earthquake, but after the Niika Ms6. 0 earthquake, that value was quickly restored to a high level, which reflects a close relationship between the Nilka Ms6. 0 earthquake and the Earth tide. According to the p-value based on the spatial window smoothing of Schuster's test, the Nilka Ms6. 0 earthquake was at or near the tidal triggering area. Thus we can see from the spatio-temporal results that the Nilka Ms6. 0 earthquake was obviously triggered by Earth fide.展开更多
The time and spatial feature of the regional seismicity triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995, was studied. The concerned region is about several hundred kilometers in length a...The time and spatial feature of the regional seismicity triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995, was studied. The concerned region is about several hundred kilometers in length and breadth surrounding the epicenter (33°-37°N, 133°-138°E). It is divided into 16 subregions. The seismicity of these subregions from January of 1976 to June of 1996 has been analyzed. It is showed that, 1) there were significant seismicity changes in 10 subregions triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995. These changes passed a Z statistic test exceeding 0.95 confidence level and the greatest epicenter distance of these subregions was 280 km; 2) seismicity changes were triggered within 1-5 days in three subregions near the main shock while in other subregions the seismicity changes were triggered within several ten days after the main shock; 3) the greatest triggered event is 5.4, which is about the same size as the greatest aftershock; 4) the regional stress change resulted from the main shock may be the triggered mechanism of the regional seismicity.展开更多
The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity s...The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.展开更多
A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slid...A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slide deposits consists of a northeast-trending paleochannel forming an inverted topography. The paleochannel deposits contain many boulders with sizes up to 1.5 meter diameter, indicating flow rate as high as 100 m3/s. The paleochannel ridge is mostly underlain by the hidden lateral contact of the Cretaceous Crevasse Canyon Formation and by the Tertiary Love Ranch and is sharply defined by Yoast Draw valley that cuts a water gap through the 25 m high inverted ridge. The landslide body consists of Love Ranch Formation overlain by a substantial cover of Quaternary fanglomerate. A series of northwest-trending faults have influenced the landslide. The broad western upslope segment of the slide has been washed away, leaving only trace evidence of a landslide. A low slide plane angle of less than 1% slope suggests a seismic trigger.展开更多
Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough rese...Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.展开更多
基金This project was sponsored by the National Programon KeyBasic Research Projects (2004CB418406) ,the Programfor the Tenth"Five-Year Plan"of China (2004BA601B01-04-03) andthe Joint Earthquake Science Foundation of China (606042) .
文摘The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.
基金This work is funded by Sichuan Science and Technology Program(No.2020GZYZF0010)National Natural Science Foundation of China(No.41374032.No.41704028).
文摘Numerous shallow earthquakes, including 24 th August Amatrice, 26 th October Visso, and 30 th October Norcia earthquakes, ruptured the segments of Mount Vettore-Gorzano fault system in the central Apennines(Italy) in 2016. In order to investigate the stress perturbation and triggering patterns among the earthquake sequences, we introduce a more realistic nonplanar coseismic fault geometry model, which improve the rupture model by assimilating relocated aftershocks and the GPS observations. We adopt the seismic slip inversion program of the steepest descent method(SDM) to create the detailed coseismic rupture models and optimize Coulomb Failure Stress model by varying the coefficient of friction and received fault parameters. The results indicate that the nonplanar fault geometry model is more reflective of the deep slip of the coseismic rupture than planar model. As evidenced by the coseismic Coulomb stress changes caused by the three mainshocks at different depth slices, the stress loading mainly distributes on the active fault zones and the stress changes can well explain the spatial distribution of aftershocks. The first large Amatrice mainshock accelerates the occurrence of the Mw 5.9 Visso and Mw 6.6 Norcia earthquakes, with the positive stress changes at the hypocenter exceeding the stress triggering threshold(0.010×10^(6) Pa) and up to 0.015×10^(6) and 0.257×10^(6) Pa, respectively. Furthermore, the Mw 5.9 Visso earthquake as well encourages the occurrence of the Mw 6.6 Norcia event with the increased stress changes of 0.052×10^(6) Pa on the hypocenter. It is concluded that the stress transfer and accumulation play crucial roles on the linkage triggering mechanism among the mainshock-mainshock and mainshockaftershocks. Noteworthily, the cumulative stress changes on the southwest segment of the Norcia Fault(NF), the southeast parts of the Montereale Fault System(MFS) and Mount Gorzano Fault(MGF) of the main regions are up to(1.5~3.5) ×10^(6) Pa. The cumulative stress changes have not been released sufficiently by aftershocks, which may increase the seismic hazard in those regions.
基金Chinese Joint Seismological Science Foundation (602005).
文摘This paper briefly reviews basic theory of seismic stress triggering. Recent development on seismic stress triggering has been reviewed in the views of seismic static and dynamic stress triggering, application of viscoelastic model in seismic stress triggering, the relation between earthquake triggering and volcanic eruption or explosion, other explanation of earthquake triggering, etc. And some suggestions for further study on seismic stress triggering in near future are given.
基金supported by the National Natural Science Foundation of China(NSFC grants No.12172036,51774018)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,IRT_17R06)+2 种基金the Russian Foundation for Basic Research,Grant Number 20‐55‐53032Russian State Task number 1021052706247‐7‐1.5.4the Government of Perm Krai,research project No.С‐26/628.
文摘Earthquakes triggered by dynamic disturbances have been confirmed by numerous observations and experiments.In the past several decades,earthquake triggering has attracted increasing attention of scholars in relation to exploring the mechanism of earthquake triggering,earthquake prediction,and the desire to use the mechanism of earthquake triggering to reduce,prevent,or trigger earthquakes.Natural earthquakes and large‐scale explosions are the most common sources of dynamic disturbances that trigger earthquakes.In the past several decades,some models have been developed,including static,dynamic,quasi‐static,and other models.Some reviews have been published,but explosiontriggered seismicity was not included.In recent years,some new results on earthquake triggering have emerged.Therefore,this paper presents a new review to reflect the new results and include the content of explosion‐triggered earthquakes for the reference of scholars in this area.Instead of a complete review of the relevant literature,this paper primarily focuses on the main aspects of dynamic earthquake triggering on a tectonic scale and makes some suggestions on issues that need to be resolved in this area in the future.
基金jointly sponsored by the Earthquake Situation Tracking Task of China Earthquake Administration(2013020119)the Earthquake Science Foundation of the Youth of Earthquake Administration of Xinjiang Uygur Autonomous Region,China(201304)
文摘A statistical analysis is done to study the spatio-temporai features of earthquake activity in the Tianshan seismic belt triggered by tide, based on Schuster's test. The data we choose is the ML ≥2. 0 earthquakes from January 1, 2010 to August 31, 2012 in eastern Tianshan, and the calculation is on tidal body stress. The results show that the p-value based on the time window smoothing of Schuster's test corresponds better with the strong earthquakes in the Tianshan seismic belt, especially for a long time before the November 1, 2011 Nilka Ms6. 0 earthquake, when the p-value of the Schuster's test was always lower than the threshold of 0. 05 for tidal trigger of earthquake, but after the Niika Ms6. 0 earthquake, that value was quickly restored to a high level, which reflects a close relationship between the Nilka Ms6. 0 earthquake and the Earth tide. According to the p-value based on the spatial window smoothing of Schuster's test, the Nilka Ms6. 0 earthquake was at or near the tidal triggering area. Thus we can see from the spatio-temporal results that the Nilka Ms6. 0 earthquake was obviously triggered by Earth fide.
文摘The time and spatial feature of the regional seismicity triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995, was studied. The concerned region is about several hundred kilometers in length and breadth surrounding the epicenter (33°-37°N, 133°-138°E). It is divided into 16 subregions. The seismicity of these subregions from January of 1976 to June of 1996 has been analyzed. It is showed that, 1) there were significant seismicity changes in 10 subregions triggered by the Hyogo-Ken Nanbu, Japan, M=7.2 earthquake on January 17, 1995. These changes passed a Z statistic test exceeding 0.95 confidence level and the greatest epicenter distance of these subregions was 280 km; 2) seismicity changes were triggered within 1-5 days in three subregions near the main shock while in other subregions the seismicity changes were triggered within several ten days after the main shock; 3) the greatest triggered event is 5.4, which is about the same size as the greatest aftershock; 4) the regional stress change resulted from the main shock may be the triggered mechanism of the regional seismicity.
基金conducted under the project sponsored by the Ministry of Earth Sciences,Govt.of India[Project Code-Mo ES/P.O.(Seismo)/1(374)/2019]
文摘The Koyna region of Maharashtra located in the western part of the~65 Myr old Deccan traps province,overlying the Neoarchean cratonic granitoid basement of peninsular India,has been experiencing recurring seismicity since 1962 after the impoundment of the Shivajisagar Reservoir behind the Koyna Dam.
文摘A landslide that probably dates to the end of the Pleistocene has been found in Sierra County. The feature consists of three sub-parallel segments, covering an area about 8 km wide and 10 km long. The head of the slide deposits consists of a northeast-trending paleochannel forming an inverted topography. The paleochannel deposits contain many boulders with sizes up to 1.5 meter diameter, indicating flow rate as high as 100 m3/s. The paleochannel ridge is mostly underlain by the hidden lateral contact of the Cretaceous Crevasse Canyon Formation and by the Tertiary Love Ranch and is sharply defined by Yoast Draw valley that cuts a water gap through the 25 m high inverted ridge. The landslide body consists of Love Ranch Formation overlain by a substantial cover of Quaternary fanglomerate. A series of northwest-trending faults have influenced the landslide. The broad western upslope segment of the slide has been washed away, leaving only trace evidence of a landslide. A low slide plane angle of less than 1% slope suggests a seismic trigger.
基金supported by Key Laboratory of Earthquake DynamicsSinoProbe-07 Project of the Ministry of Land and Resources+1 种基金National Basic Research Program of China(Grant No.2008CB425701)National High-tech R&D Program of China(Grant No.2010AA012402)
文摘Coulomb failure stress changes (ΔCFS) are used in the study of reservoir-induced seismicity (RIS) generation.The threshold value of ΔCFS that can trigger earthquakes is an important issue that deserves thorough research.The M s 6.1 earthquake in the Xinfengjiang Reservoir in 1962 is well acknowledged as the largest reservoir-induced earthquake in China.Therefore, it is a logical site for quantitative calculation of ΔCFS induced by the filling of the reservoir and for investigating the magnitude of CFS that can trigger reservoir seismic activities.To better understand the RIS mechanism, a three-dimensional poroelastic finite element model of the Xinfengjiang Reservoir is proposed here, taking into consideration of the precise topography and dynamic water level.We calculate the instant changes of stress and pore pressure induced by water load, and the time variation of effective stresses due to pore water diffusion.The CFS on the seismogenesis faults and the accumulation of strain energy in the reservoir region are also calculated.Primary results suggest that the reservoir impoundment increases both pore pressure and CFS on the fault at the focal depth.The diffusion of pore pressure was likely the main factor that triggered the main earthquake, whereas the elastic stress owing to water load was relatively small.The magnitude of CFS on seismogenesis fault can reach approximately 10 kPa, and the ΔCFS values at the hypocenter can be about 0.7-3.0 kPa, depending on the fault diffusion coefficient.The calculated maximum vertical subsidence caused by the water load in the Xinfengjiang Reservoir is 17.5 mm, which is in good agreement with the observed value of 15 mm.The accumulated strain energy owing to water load was only about 7.3×10 11 J, even less than 1% of the seismic wave energy released by the earthquake.The reservoir impoundment was the only factor that triggered the earthquake.