On the basis of the records of strong seismic events taking place in soft carbonate sediments, a new seismic sequence system of vibrational liquefaction is established, which consists of a series of units, such as esc...On the basis of the records of strong seismic events taking place in soft carbonate sediments, a new seismic sequence system of vibrational liquefaction is established, which consists of a series of units, such as escaped structure of micrite veins and liquefied deformation formed in the period of seismic liquefaction, land subsidence structure after liquefaction, tsunamic hummocky and turbidite produced by seismic events, This sequence is a generalization and summation of field observation in vast areas, which shows the whole process of a strong seismic event and provides an unified theoretical explanation. The pattern of the seismic sequence by vibrational liquefaction provides one of correlation standards for geologists in the field to discriminate events in carbonate sequences. Based on the pattern of seismic sequence, the authors first advance a new conception of the Palaeo-Tanlu (Tancheng-Lujiang) Zone and discuss primarily its geological significations.展开更多
This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration i...This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains.展开更多
Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their...Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.展开更多
Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned struct...Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned structural design.The corresponding analysis involves validating structural safety under earthquakes and human comfort under environmental vibrations through a time-history analysis.Thus,a reasonable damping model is essential.In this work,the representatives of viscous damping model and rate-independent damping model,namely the Rayleigh damping model and uniform damping model,were adopted to investigate the influence of damping models on the time-history analysis of such structural designs.The energy dissipation characteristics of the above-mentioned damping models were illustrated via a dynamic test of recycled aggregate concrete specimens.A case study was performed on a base-isolated steelconcrete composite structure.The dynamic responses under the excitation of earthquakes and environmental vibrations were compared using different damping models.The uniform damping model was found to be more flexible than the Rayleigh damping model in dealing with excitations with different frequency components.The uniform damping model is both theoretically advantageous and easy to use,demonstrating its potential in dynamic analysis of structures designed simultaneously governed by earthquakes and environmental vibrations.展开更多
基金A part of the results of the Project cosponsored by the Natural Scienee Fundation of China(49070127)the Chinese Academy of Geological Sciences(B8901)
文摘On the basis of the records of strong seismic events taking place in soft carbonate sediments, a new seismic sequence system of vibrational liquefaction is established, which consists of a series of units, such as escaped structure of micrite veins and liquefied deformation formed in the period of seismic liquefaction, land subsidence structure after liquefaction, tsunamic hummocky and turbidite produced by seismic events, This sequence is a generalization and summation of field observation in vast areas, which shows the whole process of a strong seismic event and provides an unified theoretical explanation. The pattern of the seismic sequence by vibrational liquefaction provides one of correlation standards for geologists in the field to discriminate events in carbonate sequences. Based on the pattern of seismic sequence, the authors first advance a new conception of the Palaeo-Tanlu (Tancheng-Lujiang) Zone and discuss primarily its geological significations.
基金Supported by the National Natural Science Foundation of China (Grant No. 51078098,90915007,90815027 and 50878124)the Key Laboratory of Seismic Control & Structure Safety Open FundInnovation Group Fund of Guangdong Province
文摘This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains.
文摘Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.
文摘Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned structural design.The corresponding analysis involves validating structural safety under earthquakes and human comfort under environmental vibrations through a time-history analysis.Thus,a reasonable damping model is essential.In this work,the representatives of viscous damping model and rate-independent damping model,namely the Rayleigh damping model and uniform damping model,were adopted to investigate the influence of damping models on the time-history analysis of such structural designs.The energy dissipation characteristics of the above-mentioned damping models were illustrated via a dynamic test of recycled aggregate concrete specimens.A case study was performed on a base-isolated steelconcrete composite structure.The dynamic responses under the excitation of earthquakes and environmental vibrations were compared using different damping models.The uniform damping model was found to be more flexible than the Rayleigh damping model in dealing with excitations with different frequency components.The uniform damping model is both theoretically advantageous and easy to use,demonstrating its potential in dynamic analysis of structures designed simultaneously governed by earthquakes and environmental vibrations.