The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal...The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.展开更多
The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational mod...The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.展开更多
To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. T...To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. Three bridge finite element (FE) models were built using OpenSees, in which the longitudinal and transverse pounding elements, as well as the transverse failure element of bearings were introduced. Based on this, tire seismic response analysis considering the coupling pounding-friction effect was conducted for the continuous bridge subjected to bi-directional ground motions. Furthermore, the influential parameters were analyzed. The analysis results indicate that the coupling pounding-friction effect can alter the internal force distribution of the bridge structure and generate additional torsional force to bridge columns. The friction coefficient and longitudinal pounding gap size are two important factors. The appropriate friction coefficient and longitudinal pounding gap size can significantly reduce seismic response of girders, and effectively transfer part of the girder inertia force from the fixed columns to the sliding columns, which can reduce the seismic demands of the fixed columns and improve the seismic performance of continuous bridge structures.展开更多
Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set...Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set-back in the upper body of the large chassis structure.In the parts with stiffness mutation,the torsion effect caused by the tower is far greater than that of the chassis itself.In this study,a total of 273 ground motions are collected and then filtered into four types,including the near-field ordinary,near-field pulse,far-field ordinary,and far-field harmonic.An 8-degree(0.2 g)fortified large chassis base-isolated structure is established.Furthermore,ETABS program software is used to conduct nonlinear time history analysis on the isolation and seismic model under bi-directional earthquake ground motions.The comparison results show that the seismic isolation effect of the base-isolated structure under long-period ground motions is worse than that associated with ordinary ground motions when the seismic response reduction rate of the large base floor significantly decreases compared with that of the tower.When the inter-story displacement angle and the displacement of isolation layer of the chassis exceeds the limit of Code for Seismic Design of Buildings(GB 50011-2010),it is recommended to adopt composite seismic isolation technology or add limit devices.Under the condition of long-period ground motions,the base-isolated structure reduces the lateral-torsional coupling effect of the large chassis structure,while the torsion response of large chassis’top layer increases.Under long-period ground motions with the same acceleration peak,the response of the base-isolated structure increases much more than that of the seismic structure and the consideration of this impact is suggested to be added to the Code.展开更多
Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irre...Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irregular shape of structure by using STAAD PRO. And the comparison results are studied and compared accounting for the earthquake characteristics and the structure dynamic characteristics. As the results show that the earthquake response peak values and the main response frequencies are very close and comparable. It can be referred to by the engineering applications.展开更多
The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of sev...The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.展开更多
Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seism...Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.展开更多
With the three dimensional(3D)oblique incident waves exactly determined for the free field,the soil seismic responses in both frequency and time domains are studied by the 2.5 dimension(2.5D)finite/infinite element me...With the three dimensional(3D)oblique incident waves exactly determined for the free field,the soil seismic responses in both frequency and time domains are studied by the 2.5 dimension(2.5D)finite/infinite element method.First,the free-field responses in frequency domain are solved exactly for 3D arbitrary incident P and SV waves,which requires no coordinate conversion or extra effort for SV waves with super-critical incident angles.Next,the earthquake spectra are incorporated by the concept of equivalent seismic forces on the near-field boundary,based only on the displacements input derived for unit ground accelerations of each frequency using the 2.5D approach.For the asymmetric 2.5D finite/infinite element model adopted,the procedure for soil seismic analysis is presented.The solutions computed by the proposed method are verified against those of Wolf’s and de Barros and Luco’s and for inversely calculated ground motions.Of interest is that abrupt variation in soil response occurs around the critical angle on the wave propagation plane for SV waves.In addition,the horizontal displacements attenuate with increasing horizontal incident angle,while the longitudinal ones increase inversely for 3D incident P and SV waves.展开更多
The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacem...The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves.With the present formulation,no distinction needs to be made for SV waves with over-critical incident angles that make the reflected P waves disappear,while no critical angle exists for P waves.Next,the equivalent seismic forces of the earthquake(Taft Earthquake 1952)imposed on the near-field boundary are generated by combining the solutions for unit ground accelerations with the earthquake spectrum.Based on the asymmetric finite/infinite element model,the frequency-domain motion equations for seismic analysis are presented with the key parameters selected.The results obtained in frequency and time domain are verified against those of Wolf’s,Luco and de Barros’and for inversely computed ground motions.The parametric study indicated that distinct phase difference exists between the horizontal and vertical responses for SV waves with over-critical incident angles,but not for under-critical incident angles.Other observations were also made for the numerical results inside the text.展开更多
Site conditions,including geotechnical properties and the geological setting,influence the near-surface response of strata subjected to seismic excitation.The geotechnical parameters required for the design of foundat...Site conditions,including geotechnical properties and the geological setting,influence the near-surface response of strata subjected to seismic excitation.The geotechnical parameters required for the design of foundations include mass density(ρ),damping ratio(β_(s)),shear wave velocity(V_(s)),and soil shear modulus(G_(s)).The values of the last three parameters are sensitive to the level of nonlinear strain induced in the strata due to seismic ground motion.In this study,the effect of variations in soil properties,such as plasticity index(PI),effective stress(σ′),over consolidation ratio(OCR),impedance contrast ratio(ICR)between the bedrock and the overlying strata,and depth of soil strata over bedrock(H),on seismic design parameters(β_(s),V_(s),and G_(s))was investigated for National Earthquake Hazards Reduction Program(NEHRP)site classes C and D,through 1D nonlinear seismic site response analysis.The Morris one-at-a-time(OAT)sensitivity analysis indicated thatβ_(s),V_(s),and G_(s)were significantly influenced by variations in PI,while ICR affectedβ_(s)more than it affected V_(s)and G_(s).However,the influence of H on these parameters was less significant.It was also found that variations in soil properties influenced seismic design parameters in soil type D more significantly than in soil type C.Predictive relationships forβ_(s),V_(s),and G_(s)were derived based on the 1D seismic site response analysis and sensitivity analysis results.Theβ_(s),V_(s),and G_(s)values obtained from the analysis were compared with the corresponding values in NEHRP to determine the similarities and differences between the two sets of values.The need to incorporate PI and ICR in the metrics for determiningβ_(s),V_(s),and G_(s)for the seismic design of foundations was highlighted.展开更多
Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of gre...Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of great importance.In this paper,seismic responses of dyke on liquefiable soils were investigated by means of dynamic centrifuge model tests and three-dimensional(3D) effective stress analysis method which is based on a multiple shear mechanism model and a liquefaction front.For the prototype scale centrifuge tests,sine wave input motions with peak accelerations 0.806 m/s2,1.790 m/s2 and 3.133 m/s2 of varied amplitudes were adopted to study the seismic performances of dyke on the saturated soil layer foundation with relative density of approximately 30%.Then,corresponding numerical simulations were conducted to investigate the distribution and variations of deformation,acceleration,excess pore-water pressure(EPWP),and behaviors of shear dilatancy in the dyke and the liquefiable soil foundation.Moreover,detailed discussions and comparisons between numerical simulations and centrifuge tests were also presented.It is concluded that the computed results have a good agreement with the measured results by centrifuge tests.The physical and numerical models both indicate that the dyke hosted on liquefiable soils subjected to earthquake motions has exhibited larger settlement and lateral spread:the stronger the motion is,the larger the dyke deformation is.Compared to soils in the deep ground under the dyke and the free field,the EPWP ratio is much smaller in the shallow liquefiable soil beneath the dyke in spite of large deformation produced.For the same overburden depth soil from free site and the liquefiable foundation beneath dyke,the characteristics of effective stress path and stress-strain relations are different.All these results may be of theoretical and practical significance for seismic design of the dyke on liquefiable soils.展开更多
The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soi...The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably.展开更多
Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dyn...Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.展开更多
In Tokyo Metropolitan University, the horizontal and vertical array earthquake observations has begun in June 1994 at the five stations (kl-k5) on the ground surface and bedrock (k6:-30 m depth) at Zushi-site. Mo...In Tokyo Metropolitan University, the horizontal and vertical array earthquake observations has begun in June 1994 at the five stations (kl-k5) on the ground surface and bedrock (k6:-30 m depth) at Zushi-site. More than 200 medium and small earthquakes with the magnitude 5.0-7.3 were recorded between 1994 and 2012. At the 2011 off the Pacific coast of Tohoku Earthquake (EQ.3.11 M = 9.0), the largest surface ground acceleration (kl = 124.5 gal, k6 = 45.5 gal) of the horizontal component was recorded. Main results were obtained as follows: (1) the surface ground motion characteristics of Zushi-site were examined using the observed data (kl & k6) of EQ.3.11, the past-observed smaller earthquakes (EQ.1 & EQ.10.08) and aftershock (EQ.12.3), respectively. The non-liner seismic response characteristics of the surface ground at Zushi-site were verified during EQ.3.11. (2) The ground structure models were examined and identified by the modal analyses and the FEM (finite element method) identification analyses using the observed acceleration data of EQ.3.11 and the past observed smaller earthquakes. (3) Moreover, the three dimensional seismic response analyses were performed by TDAPUl (time domain 3-dimensional dynamic analysis program), using k6 for input motions and identified ground structure model, and evaluated the dynamic behaviours of the surface ground. The calculated results agreed well with the observed ones.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen w...This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models.展开更多
The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increas...The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).展开更多
The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis ...The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.展开更多
On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major fai...On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.51978337,U2039209).
文摘The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.
基金supported by the National Natural Science Foundation of China(No.50179006)Science Development Foundation of Shandong University of Science and Technology(No.05g002).
文摘The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.
基金The National Natural Science Foundation of China(No.51678141)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0128)the Fundamental Research Funds for the Central Universities
文摘To evaluate the coupling pounding-friction effect between bridge girders and retainers and its influence on bridge seismic response, a reinforced concrete (RC) continuous bridge is selected as the research object. Three bridge finite element (FE) models were built using OpenSees, in which the longitudinal and transverse pounding elements, as well as the transverse failure element of bearings were introduced. Based on this, tire seismic response analysis considering the coupling pounding-friction effect was conducted for the continuous bridge subjected to bi-directional ground motions. Furthermore, the influential parameters were analyzed. The analysis results indicate that the coupling pounding-friction effect can alter the internal force distribution of the bridge structure and generate additional torsional force to bridge columns. The friction coefficient and longitudinal pounding gap size are two important factors. The appropriate friction coefficient and longitudinal pounding gap size can significantly reduce seismic response of girders, and effectively transfer part of the girder inertia force from the fixed columns to the sliding columns, which can reduce the seismic demands of the fixed columns and improve the seismic performance of continuous bridge structures.
基金This project is jointly sponsored by Yunnan Youth Earthquake Science Foundation(2020K06)the National Natural Science Foundation of China(51778149)Xiamen University Tan Kah College School-Enterprise Cooperation Foundation(JGH2020034).
文摘Long-period structures(e.g.Isolated structures)tend to produce pseudo-resonance with low frequency compo-nents of long-period ground motions,resulting in the increase in damage.Stiffness mutation occurs due to the set-back in the upper body of the large chassis structure.In the parts with stiffness mutation,the torsion effect caused by the tower is far greater than that of the chassis itself.In this study,a total of 273 ground motions are collected and then filtered into four types,including the near-field ordinary,near-field pulse,far-field ordinary,and far-field harmonic.An 8-degree(0.2 g)fortified large chassis base-isolated structure is established.Furthermore,ETABS program software is used to conduct nonlinear time history analysis on the isolation and seismic model under bi-directional earthquake ground motions.The comparison results show that the seismic isolation effect of the base-isolated structure under long-period ground motions is worse than that associated with ordinary ground motions when the seismic response reduction rate of the large base floor significantly decreases compared with that of the tower.When the inter-story displacement angle and the displacement of isolation layer of the chassis exceeds the limit of Code for Seismic Design of Buildings(GB 50011-2010),it is recommended to adopt composite seismic isolation technology or add limit devices.Under the condition of long-period ground motions,the base-isolated structure reduces the lateral-torsional coupling effect of the large chassis structure,while the torsion response of large chassis’top layer increases.Under long-period ground motions with the same acceleration peak,the response of the base-isolated structure increases much more than that of the seismic structure and the consideration of this impact is suggested to be added to the Code.
文摘Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irregular shape of structure by using STAAD PRO. And the comparison results are studied and compared accounting for the earthquake characteristics and the structure dynamic characteristics. As the results show that the earthquake response peak values and the main response frequencies are very close and comparable. It can be referred to by the engineering applications.
文摘The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.
基金founded by the Earthquake Science and Technology Spark Plan of China(XH12063)
文摘Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.
基金National Natural Science Foundation of China(Grant Nos.52078082,52008057)Chongqing Science and Technology Commission(Nos.cstc2021yszx-jscxX0001,2022YSZX-JSX0004CSTB).
文摘With the three dimensional(3D)oblique incident waves exactly determined for the free field,the soil seismic responses in both frequency and time domains are studied by the 2.5 dimension(2.5D)finite/infinite element method.First,the free-field responses in frequency domain are solved exactly for 3D arbitrary incident P and SV waves,which requires no coordinate conversion or extra effort for SV waves with super-critical incident angles.Next,the earthquake spectra are incorporated by the concept of equivalent seismic forces on the near-field boundary,based only on the displacements input derived for unit ground accelerations of each frequency using the 2.5D approach.For the asymmetric 2.5D finite/infinite element model adopted,the procedure for soil seismic analysis is presented.The solutions computed by the proposed method are verified against those of Wolf’s and de Barros and Luco’s and for inversely calculated ground motions.Of interest is that abrupt variation in soil response occurs around the critical angle on the wave propagation plane for SV waves.In addition,the horizontal displacements attenuate with increasing horizontal incident angle,while the longitudinal ones increase inversely for 3D incident P and SV waves.
基金sponsored by the following agencies:National Natural Science Foundation of China(Grant No.52078082)Chongqing Science and Technology Commission(No.cstc2019yszx-jcyjX0001,cstc2020yszx-jscxX0002,and cstc2021yszxjscxX0001).
文摘The seismic analysis of a viscoelastic half-space under two-dimensional(2D)oblique incident waves is carried out by the finite/infinite element method(FIEM).First,the frequency-domain exact solutions for the displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves.With the present formulation,no distinction needs to be made for SV waves with over-critical incident angles that make the reflected P waves disappear,while no critical angle exists for P waves.Next,the equivalent seismic forces of the earthquake(Taft Earthquake 1952)imposed on the near-field boundary are generated by combining the solutions for unit ground accelerations with the earthquake spectrum.Based on the asymmetric finite/infinite element model,the frequency-domain motion equations for seismic analysis are presented with the key parameters selected.The results obtained in frequency and time domain are verified against those of Wolf’s,Luco and de Barros’and for inversely computed ground motions.The parametric study indicated that distinct phase difference exists between the horizontal and vertical responses for SV waves with over-critical incident angles,but not for under-critical incident angles.Other observations were also made for the numerical results inside the text.
基金This work was supported by Kuwait University,Research Grant No.EV01/15.
文摘Site conditions,including geotechnical properties and the geological setting,influence the near-surface response of strata subjected to seismic excitation.The geotechnical parameters required for the design of foundations include mass density(ρ),damping ratio(β_(s)),shear wave velocity(V_(s)),and soil shear modulus(G_(s)).The values of the last three parameters are sensitive to the level of nonlinear strain induced in the strata due to seismic ground motion.In this study,the effect of variations in soil properties,such as plasticity index(PI),effective stress(σ′),over consolidation ratio(OCR),impedance contrast ratio(ICR)between the bedrock and the overlying strata,and depth of soil strata over bedrock(H),on seismic design parameters(β_(s),V_(s),and G_(s))was investigated for National Earthquake Hazards Reduction Program(NEHRP)site classes C and D,through 1D nonlinear seismic site response analysis.The Morris one-at-a-time(OAT)sensitivity analysis indicated thatβ_(s),V_(s),and G_(s)were significantly influenced by variations in PI,while ICR affectedβ_(s)more than it affected V_(s)and G_(s).However,the influence of H on these parameters was less significant.It was also found that variations in soil properties influenced seismic design parameters in soil type D more significantly than in soil type C.Predictive relationships forβ_(s),V_(s),and G_(s)were derived based on the 1D seismic site response analysis and sensitivity analysis results.Theβ_(s),V_(s),and G_(s)values obtained from the analysis were compared with the corresponding values in NEHRP to determine the similarities and differences between the two sets of values.The need to incorporate PI and ICR in the metrics for determiningβ_(s),V_(s),and G_(s)for the seismic design of foundations was highlighted.
基金Financial supports provided by Science and Technological Fund of Anhui Province for Outstanding Youth(No.08040106830)National Natural Sciences Foundation of China(No.41172274)
文摘Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of great importance.In this paper,seismic responses of dyke on liquefiable soils were investigated by means of dynamic centrifuge model tests and three-dimensional(3D) effective stress analysis method which is based on a multiple shear mechanism model and a liquefaction front.For the prototype scale centrifuge tests,sine wave input motions with peak accelerations 0.806 m/s2,1.790 m/s2 and 3.133 m/s2 of varied amplitudes were adopted to study the seismic performances of dyke on the saturated soil layer foundation with relative density of approximately 30%.Then,corresponding numerical simulations were conducted to investigate the distribution and variations of deformation,acceleration,excess pore-water pressure(EPWP),and behaviors of shear dilatancy in the dyke and the liquefiable soil foundation.Moreover,detailed discussions and comparisons between numerical simulations and centrifuge tests were also presented.It is concluded that the computed results have a good agreement with the measured results by centrifuge tests.The physical and numerical models both indicate that the dyke hosted on liquefiable soils subjected to earthquake motions has exhibited larger settlement and lateral spread:the stronger the motion is,the larger the dyke deformation is.Compared to soils in the deep ground under the dyke and the free field,the EPWP ratio is much smaller in the shallow liquefiable soil beneath the dyke in spite of large deformation produced.For the same overburden depth soil from free site and the liquefiable foundation beneath dyke,the characteristics of effective stress path and stress-strain relations are different.All these results may be of theoretical and practical significance for seismic design of the dyke on liquefiable soils.
基金Project supported by the National Natural Science Foundation ofChina (No. 10372089) and Provincial Department of EducationZhejiang Province (No. 20010572) China
文摘The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably.
文摘Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.
文摘In Tokyo Metropolitan University, the horizontal and vertical array earthquake observations has begun in June 1994 at the five stations (kl-k5) on the ground surface and bedrock (k6:-30 m depth) at Zushi-site. More than 200 medium and small earthquakes with the magnitude 5.0-7.3 were recorded between 1994 and 2012. At the 2011 off the Pacific coast of Tohoku Earthquake (EQ.3.11 M = 9.0), the largest surface ground acceleration (kl = 124.5 gal, k6 = 45.5 gal) of the horizontal component was recorded. Main results were obtained as follows: (1) the surface ground motion characteristics of Zushi-site were examined using the observed data (kl & k6) of EQ.3.11, the past-observed smaller earthquakes (EQ.1 & EQ.10.08) and aftershock (EQ.12.3), respectively. The non-liner seismic response characteristics of the surface ground at Zushi-site were verified during EQ.3.11. (2) The ground structure models were examined and identified by the modal analyses and the FEM (finite element method) identification analyses using the observed acceleration data of EQ.3.11 and the past observed smaller earthquakes. (3) Moreover, the three dimensional seismic response analyses were performed by TDAPUl (time domain 3-dimensional dynamic analysis program), using k6 for input motions and identified ground structure model, and evaluated the dynamic behaviours of the surface ground. The calculated results agreed well with the observed ones.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.
基金Liaoning Provincial Natural Science Foundation of China Under Grant No. 20052005
文摘This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models.
文摘The objective of Performance-Based Earthquake Engineering (PBEE) is the analysis of performance objectives with a specified annual probability of exceedance. Increasingly undesirable performance is caused by increasing levels of strong ground motion having decreasing annual probabilities of exceedance. The development of this methodology includes three steps: (1) evaluation of the distribution of ground motion at a site; (2) evaluation of the distribution of system response; (3) evaluation of the probability of exceeding decision variables within a given time period, given appropriate damage measures. The work has taken a systematic approach to determine the impact of increasing levels of detail in site characterization on the accuracy of ground motion and site effects predictions. Complementary studies have investigated the use of the following models for evaluating site effects: (1) amplification factors defined on the basis of generalized site categories, (2) one-dimensional ground response analysis, and (3) two-dimensional ground response analysis for surface topography on ground motion. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. It focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements Down Hole (D-H), Cross Hole (C-H), Seismic Dilatometer Marchetti Test (SDMT) and by different variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic tests for soil characterization: Resonant Column Test (RCT), Cyclic Loading Torsional Shear Test (CLTST).
文摘The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.
文摘On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span>