期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Deep tectonics and seismogenic mechanisms of the seismic source zone of the Jishishan M_(s)6.2 earthquake on December 18,2023,at the northeast margin of the Tibetan Plateau
1
作者 Qiong Wang ShuYu Li +3 位作者 XinYi Li Yue Wu PanPan Zhao Yuan Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期514-521,共8页
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t... On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault. 展开更多
关键词 Jishishan M_(s)6.2 earthquake crustal structure anisotropy stress and strain seismogenic mechanism northeast margin of the Tibetan Plateau
下载PDF
Seismicity and seismogenic mechanism of the M_S 6.0 Luxian earthquake on September 16, 2021
2
作者 Kezhen Zuo Cuiping Zhao 《Earthquake Research Advances》 CSCD 2023年第4期33-42,共10页
Based on the seismic data recorded by the China Earthquake Networks Center(CENC) in the Luxian area from January 2009 to October 2021,the 3D V_P,V_S, V_P/V_S structures and seismic locations of the area are obtained b... Based on the seismic data recorded by the China Earthquake Networks Center(CENC) in the Luxian area from January 2009 to October 2021,the 3D V_P,V_S, V_P/V_S structures and seismic locations of the area are obtained by joint inversion using the V_P/V_S model consistency-constrained double-difference tomography method(tomoDDMC).The earthquakes in the study area are mainly concentrated at a depth of 2-6 km,and the focal depth is generally shallow.The Ms 6.0 Luxian earthquake occurred at the transition zone of high-and low-velocity anomalies and the aftershock sequence was distributed along the edge of the low-V_P zone.A small number of foreshocks occurred on the west side of the M_S 6.0 Luxian earthquake,while most of the aftershocks were distributed on the east side of the M_S 6.0 Luxian earthquake.The aftershock sequence consisted of three seismic bands with different trends,and the overall distribution was in a NWW direction,which was inconsistent with the spatial distribution of the main active faults nearby.In addition,the spatiotemporal distribution of earthquakes and the variation of b-values are closely related to the industrial water injection activities in the study area,reflecting the activation of pre-existing hidden faults under certain tectonic and stress environments leading to seismic activities in the area. 展开更多
关键词 M_S 6.0 Luxian earthquake SEISMICITY Velocity structure seismogenic mechanism
下载PDF
Seismogenic mechanism of the Lancang and Gengma earthquakes 被引量:1
3
作者 俞维贤 周瑞琦 +1 位作者 候学英 周光全 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第2期209-216,共8页
The typical earthquake disaster and its seismogenic mechanism in the meizoseismal regions of M7. 6 Lancangand M7. 2 Gengma earthquakes are introduced and analysed in this paper. Combining with the tectonic features in... The typical earthquake disaster and its seismogenic mechanism in the meizoseismal regions of M7. 6 Lancangand M7. 2 Gengma earthquakes are introduced and analysed in this paper. Combining with the tectonic features in the earthquake regions, the difference of the tectonic activity between the two earthquakes is alsoshown in the paper: the strong strike offset feature of Muga fault for M7. 6 Lancang earthquake, while thedip-slip feature of Hanmuba fault for M7. 2 Gengma earthquake. The obvious difference in the displacementbetween Muga fault and Hanmuba fault probably related to the part adjustment and diversion for the principalcompressive stress axis in the focal area of M7. 2 Gengma earthquake. The M7. 6 Lancang earthquake triggered M7. 2 Gengma earthquake. 展开更多
关键词 earthquake hazard seismogenic mechanism tectogenesis
下载PDF
Study on the Seismogenic Mechanism of the Earthquake Mw6.9 in 2014 in the Aegean Sea Seismic Cone 被引量:4
4
作者 Lijun Chen 《International Journal of Geosciences》 2016年第5期669-684,共16页
In accordance with the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, we use the ANSS earthquake catalogue from the Northern California earthquake data center and the... In accordance with the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, we use the ANSS earthquake catalogue from the Northern California earthquake data center and the EMSC earthquake catalogue from the European-Mediterranean Seismological Centre to study the seismic activities of the Turkish Branch Seismic Cone in the Mediterranean Seismic Cone and the following Aegean Sea Seismic Cone, and show reproduction through graphics and animation, the seismogenic process and seismogenic mechanism of the earthquake Mw6.9 on May 24,2014 innorthern Aegean Sea. It was concluded that the energy of strong earthquake of magnitude around7 inAegean Seawas probably from energy transfer and accumulation in deep mantle and incentive lithosphere in the way of wave pattern, and then the strong earthquake occurs suddenly in search of the weak parts of the surface structure. The purpose of this paper is to open a hole in the traditional seismic genesis, and it is beneficial to the further research on the theory and method of earthquake prediction. It is our first attempt to study this case and it needs further examination. In this paper, we divide the Turkish Branch Seismic Cone of the Mediterranean Seismic Cone into 4 tertiary seismic cones, and we show a preliminary seismo-tectonic model of Aegean region. It will be conducive to seismic monitoring and earthquake prediction research inGreece,Turkey,RomaniaandPolandregions. At present, the world’s earthquake prediction has little effect, and it even tends to be not cognitive. Innovative thinking is the only way out. 展开更多
关键词 Seismo-Geothermics Theory Seismic Cone Turkey Aegean Sea Subcrustal Earthquake Intracrustal Strong Earthquake seismogenic mechanism
下载PDF
Seismogenic environment and mechanism of the Yangbi M_(S)6.4 earthquake in Yunnan,China
5
作者 Mengqiao Duan Kezhen Zuo +1 位作者 Cuiping Zhao Lianqing Zhou 《Earthquake Science》 2022年第4期297-310,共14页
The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-e... The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence. 展开更多
关键词 Yangbi M_(S)6.4 earthquake v_(P) v_(S) and v_(P)/v_(S)tomography seismogenic environment and mechanism
下载PDF
Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 M_(S)6.0 Luxian earthquake source area,China
6
作者 Wei Xu Pingping Wu +4 位作者 Dahu Li Huili Guo Qiyan Yang Laiyu Lu Zhifeng Ding 《Earthquake Science》 2023年第5期356-375,共20页
On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dim... On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing. 展开更多
关键词 Luxian earthquake ambient noise tomography S-wave velocity model SEISMICITY seismogenic mechanism joint inversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部