期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
Prospects for Jovian seismology with the Lenghu planetary telescope
1
作者 YiQing Zou Fei He +4 位作者 ShanShan Zheng Lei Yu ZhongHua Yao ZhaoJin Rong Yong Wei 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期703-710,共8页
Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses curr... Jupiter is one of the top priorities for deep space exploration in China and other countries.The structure of Jupiter’s interior,in particular,is a crucial but still unclear scientific topic.This paper discusses current scientific understanding of Jupiter’s interior by summarizing the history of past and current exploration and data analysis.We review recent space-based and ground-based observation methods and analyze their feasibility.To gain new insight into the internal structure of Jupiter,we propose to study Jupiter’s innards by planetary seismology.Ground-based observation,namely the Jupiter Seismologic Interferometer Polarization Imager(SIPI)in Lenghu,will be developed to obtain the Doppler velocity distribution on the surface of Jupiter and identify oscillation signals.Lenghu has observation conditions that are not only exceptional in China but even in the world,capable of providing novel insight into the interior of Jupiter.This will also be the first study in China of the interior of Jupiter using asteroseismology,which has significant implications for China’s plans to explore Jupiter via spacecraft-mounted instruments. 展开更多
关键词 Jupiter seismology Jupiter’s interior Jupiter model Jupiter Seismologic Interferometer Polarization Imager(SIPI)
下载PDF
Seismology and Climatology: A Study of Seismological Impacts of Climate Change in Indonesia
2
作者 Lukundo Mtambo Xingxiang Tao 《Atmospheric and Climate Sciences》 2024年第2期210-220,共11页
Climate change has been a matter of discourse for the last several decades. Much research has been conducted regarding the causes and impacts of climate change around the world. The current research contributes to the... Climate change has been a matter of discourse for the last several decades. Much research has been conducted regarding the causes and impacts of climate change around the world. The current research contributes to the knowledge of the influence of climate change on our environment, with emphasis on earthquake occurrences in the region of Indonesia. Using global temperature anomaly as a measure of climate change, and earthquake data in Indonesia for the period 1900-2022, the paper seeks to find a relationship (if any) between the two variables. Statistical methods used include normal distribution analysis, linear regression and correlation test. The results show peculiar patterns in the progression of earthquake occurrences as well as global temperature anomaly occurring in the same time periods. The findings also indicated that the magnitudes of earthquakes remained unaffected by global temperature anomalies over the years. Nonetheless, there appears to be a potential correlation between temperature anomalies and the frequency of earthquake occurrences. As per the results, an increase in temperature anomaly is associated with a higher frequency of earthquakes. 展开更多
关键词 EARTHQUAKES CLIMATOLOGY Climate Change seismology Correlation Linear Regression Indonesia
下载PDF
Seismology in the Light of Fundamental Sciences
3
作者 Bychkov Serguei 《Open Journal of Earthquake Research》 2024年第1期84-112,共29页
According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks... According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks of the Earth’s crust and mantle and related phenomena. Seismology conducts research in the following areas and is designed to scientifically explain two main issues: 1) Study of the nature of seismic phenomena and the internal structure of the Earth. Why, how and where do seismic impacts occur? 2) Protecting humanity from the catastrophic consequences of seismic events. Is it possible to predict seismic impacts? Like any other scientific discipline, seismology is obliged to follow the laws of science and its fundamental principles. This article is devoted to the description of violations of the fundamental laws of science committed by seismologists in the study of seismic processes and raises the question of compliance of the stated research directions with the current level of development of sciences. Answering point No. 1, regarding the structure of the Earth, it is possible to recognize some successes of seismology, which nevertheless cause great doubts in the scientific community of geophysicists, because if the stratigraphic data of ultra-deep wells often refute [1] the conclusions made by seismologists on the structure of the Earth’s crust at shallow depth, then to assert something unambiguously about the structure of the mantle and at the present stage, seismology cannot. Answering the main questions of seismology, why seismic phenomena occur, and how earthquake energy is formed, seismologists have not had, and have not. Answering point No. 2, we can confidently say that in the matter of forecasting seismic phenomena, seismology has not advanced one iota over the past century, and as seismologists have been confused in the search for earthquake prediction algorithms, they are also confused without any hope of success. All that modern seismology can “boast” is the theory of Elastic recoil [2], the absurdity of which does not cause any doubt among the progressive part of geophysicists. But, the fact that most of the leading scientists-seismologists continue to piously believe the conclusions of the Elastic Recoil theory puts seismology in a humiliating position, because Mr. Reid’s theory is the clearest example of a false theory based on scientific incompetence of scientists, a model of brazen violation of the fundamental laws of science and the foundation of false and ignorant conclusions. Based on the results achieved, or rather on their absence, we regret to draw a sad conclusion: modern seismology is in the deepest decline, the cause of which is the incompetence of researchers as a result of their catastrophically low level of academic training, who stuff the scientific community with scientific geophysical rubbish, breeding similar ignoramuses in seismology. We understand that by asserting this, we offend most seismologists, but it is impossible to continue to tolerate this state of affairs in geophysics, because: “Amicus plato, sed magis amica est veritas.” Obviously, the time has come for a new meteorologist, Alfred Wagener [3], who will come and teach seismologists not to guess on coffee grounds, but to investigate seismic processes using the fundamental laws of science. In this article, we not only investigate the reasons for the unsatisfactory state of affairs in seismology, but also give our answers to the questions, of why earthquakes occur and how seismic energy is formed. 展开更多
关键词 seismology EARTHQUAKE Fundamental Laws of Science
下载PDF
Converted-wave Seismology in Anisotropic Media Revisited, Part II: Application to Parameter Estimation 被引量:2
4
作者 李向阳 Yuan Jianxin 《Applied Geophysics》 SCIE CSCD 2005年第3期153-167,i0001,F0003,共17页
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc... In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow. 展开更多
关键词 converted wave ANISOTROPIC MOVEOUT VELOCITY and seismology
下载PDF
Forensic Seismology and Boundary Element Method Application vis-à-vis ROKS Cheonan Underwater Explosion 被引量:2
5
作者 So Gu Kim 《Journal of Marine Science and Application》 2013年第4期422-433,共12页
On March 26,2010 an underwater explosion(UWE)led to the sinking of the ROKS Cheonan.The official Multinational Civilian-Military Joint Investigation Group(MCMJIG)report concluded that the cause of the underwater explo... On March 26,2010 an underwater explosion(UWE)led to the sinking of the ROKS Cheonan.The official Multinational Civilian-Military Joint Investigation Group(MCMJIG)report concluded that the cause of the underwater explosion was a 250 kg net explosive weight(NEW)detonation at a depth of 6 9 m from a DPRK"CHT-02D"torpedo.Kim and Gitterman(2012a)determined the NEW and seismic magnitude as 136 kg at a depth of approximately 8m and 2.04,respectively using basic hydrodynamics based on theoretical and experimental methods as well as spectral analysis and seismic methods.The purpose of this study was to clarify the cause of the UWE via more detailed methods using bubble dynamics and simulation of propellers as well as forensic seismology.Regarding the observed bubble pulse period of 0.990 s,0.976 s and 1.030 s were found in case of a 136NEW at a detonation depth of 8 m using the boundary element method(BEM)and 3D bubble shape simulations derived for a 136kg NEW detonation at a depth of 8 m approximately 5 m portside from the hull centerline.Here we show through analytical equations,models and 3D bubble shape simulations that the most probable cause of this underwater explosion was a 136 kg NEW detonation at a depth of 8m attributable to a ROK littoral"land control"mine(LCM). 展开更多
关键词 CEPSTRUM SPECTROGRAM BUBBLE pulse TOROIDAL BUBBLE boundary element method ICCP forensic seismology underwater explosion
下载PDF
Artificial intelligence in seismology:Advent,performance and future trends 被引量:1
6
作者 Pengcheng Jiao Amir H.Alavi 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第3期739-744,共6页
Realistically predicting earthquake is critical for seismic risk assessment,prevention and safe design of major structures.Due to the complex nature of seismic events,it is challengeable to efficiently identify the ea... Realistically predicting earthquake is critical for seismic risk assessment,prevention and safe design of major structures.Due to the complex nature of seismic events,it is challengeable to efficiently identify the earthquake response and extract indicative features from the continuously detected seismic data.These challenges severely impact the performance of traditional seismic prediction models and obstacle the development of seismology in general.Taking their advantages in data analysis,artificial intelligence(AI) techniques have been utilized as powerful statistical tools to tackle these issues.This typically involves processing massive detected data with severe noise to enhance the seismic performance of structures.From extracting meaningful sensing data to unveiling seismic events that are below the detection level,AI assists in identifying unknown features to more accurately predicting the earthquake activities.In this focus paper,we provide an overview of the recent AI studies in seismology and evaluate the performance of the major AI techniques including machine learning and deep learning in seismic data analysis.Furthermore,we envision the future direction of the AI methods in earthquake engineering which will involve deep learning-enhanced seismology in an internet-of-things(IoT) platform. 展开更多
关键词 seismology Artificial INTELLIGENCE MACHINE LEARNING DEEP LEARNING Internet-of-Things
下载PDF
Preface to the special issue of Dense Array Seismology 被引量:3
7
作者 Huajian Yao Baoshan Wang +2 位作者 Xiaobo Tian Hongfeng Yang Xiaofeng Tian 《Earthquake Science》 CSCD 2018年第5期225-226,共2页
Both earthquake seismology and structural seismology rely on observations, which in turn contribute critically to the development of seismology, especially in recent years.In order to understand specific geologic stru... Both earthquake seismology and structural seismology rely on observations, which in turn contribute critically to the development of seismology, especially in recent years.In order to understand specific geologic structures and interior processes of the Earth, seismic arrays are widely 展开更多
关键词 Preface to the special issue of Dense Array seismology
下载PDF
Radio Anomalies, Acoustic Emissions and Gravitational Variations in the Teaching of Seismology at Secondary School 被引量:1
8
作者 Valentino Straser 《Journal of Geological Resource and Engineering》 2016年第5期218-230,共13页
Following crustal stress and the tectonic evolutions that lead to the triggering of seisms is still premature, for technological reasons. Instead, in view of the energies involved, which are in the order of kilotons, ... Following crustal stress and the tectonic evolutions that lead to the triggering of seisms is still premature, for technological reasons. Instead, in view of the energies involved, which are in the order of kilotons, it is necessary to collect symptoms manifesting inside the Earth. The greater the stresses produced, the more evident will be the seismic signals manifesting on a global scale. From the point of view of teaching, it is proposed to study seismology in secondary schools using an "evidential" paradigm, rather than the "Galileian" sort. This will require a more modern approach, one that considers non-linearity an investigation model that is more in line with the Natural Science approach. To this effect, also the seismology lab is transformed from a place where reality is "reproduced", into a setting where comparisons are made in the intrinsic presence of clues rather than proofs. The instruments used to carry out this project, which is taking its first steps in an experimental form in Parma (Italy), can be reproduced at low cost, but without forsaking precision measurements. The instruments in question are those used to detect radio anomalies, acoustic emissions produced in the deepest layers of the terrestrial crust, and variations in gravity that require a computer to interface data and elaborate signals 24/7. 展开更多
关键词 Radio anomalies gravimetric measurements acoustic emission evidential paradigm Galileian paradigm seismology.
下载PDF
MODELING v_P AND Q ON EXPLOSION SEISMOLOGY DATA IN NE TIBET
9
作者 A. Galvé 1, A. Hirn 1, J. Gallart 2, Jiang Mei 3, Wang Youxue 3 2 IJA, CSIC, calle Lluis Sole i Sabaris, Barcelona 08028, Spain 3 Chinese Academy of Geological Sciences, Baiwanzhuang Roa 《地学前缘》 EI CAS CSCD 2000年第S1期331-331,共1页
A Sino\|French refraction\|reflection experiment was conducted in October 1998 in the northeastern edge of the Tibetan Plateau from the Qiang Tang through the north Kunlun block.The successive wide\|angle reflection t... A Sino\|French refraction\|reflection experiment was conducted in October 1998 in the northeastern edge of the Tibetan Plateau from the Qiang Tang through the north Kunlun block.The successive wide\|angle reflection traveltime curves are modeled trying to keep the minimum structure. First results obtained along this 700km transect, show the contrast of crustal structure between the three blocks crossed and the state of the crustal material.North of the Kunlun suture, a change of the Moho depth appears from the Qaidam basin, 55km, to the south approaching the Kunlun range, 65km. But the main crustal characteristic is a great thickness of upper crustal material and the lack of lower crust. This implies a crustal average velocity of 6 2km/s, which is much lower than the worldwide average of 6 45km/s. Interpretations of this crustal column may consider, assuming the crust had been normal that while its upper part thickened the lower one was transported away, underthrust to the south or to depth. Alternatively the velocity in the lower crust may have been changed by metamorphism. 展开更多
关键词 V p Q MODELING seismology NE TIBET
下载PDF
My seismology journey with Donald V.Helmberger
10
作者 Shengji Wei 《Earthquake Science》 2022年第1期54-57,共4页
My journey on the wiggles with Don started from February 2008,when I got an opportunity to visit the Caltech Seismolab as a visiting PhD student,which was made possible via Dr.Sidao Ni’s recommendation.A previous stu... My journey on the wiggles with Don started from February 2008,when I got an opportunity to visit the Caltech Seismolab as a visiting PhD student,which was made possible via Dr.Sidao Ni’s recommendation.A previous student of Don,Sidao was a professor at the School of Earth and Space Sciences(ESS)at the University of Science and Technology of China(USTC)at that time.Sidao offered the“Computational Seismology”class at USTC where I learned a lot about the modern developments in seismology.I also met Sidao many times to discuss a wide range of research topics,I believe it is a style he inherited from his experiences with Don and other professors in Seismolab. 展开更多
关键词 seismology EARTH JOURNEY
下载PDF
Preface to special issue on recent advances in computational seismology and its applications
11
作者 Yanbin Wang Wei Zhang 《Earthquake Science》 CSCD 2018年第2期53-54,共2页
Computational seismology is a relatively new interdisciplinary field spanning computational techniques in theoretical and observational seismology. It studies numerical methods and their implementation in various theo... Computational seismology is a relatively new interdisciplinary field spanning computational techniques in theoretical and observational seismology. It studies numerical methods and their implementation in various theoretical and applied problems in seismology. 展开更多
关键词 Preface to special issue on recent advances in computational seismology and its applications
下载PDF
The Development of World Data Center for Seismology,Beijing
12
作者 Tian Li Zou Liye Liu Ruifeng Huang Zhibin 《Earthquake Research in China》 2009年第1期96-104,共9页
World Data Center(WDC)for Seismology,Beijing has developed for 20 years in China until this year.The sustained and stable data sharing service system has already taken shape.This article gives an overview of the const... World Data Center(WDC)for Seismology,Beijing has developed for 20 years in China until this year.The sustained and stable data sharing service system has already taken shape.This article gives an overview of the construction and development of WDC for Seismology,Beijing.It outlines the history,facilities and technical specifications of the center.It also illustrates the data service,the website,and gives a brief description of the perspective. 展开更多
关键词 World Data Center WDC for seismology Beijing Data service DATABASE WEBSITE
下载PDF
FUJIAN SEISMOLOGY Vol.19,2003 CONTENTS
13
《福建地震》 2004年第1期47-47,共1页
关键词 FUJIAN seismology Vol.19 2003 CONTENTS
下载PDF
The application of neural networks to comprehensive prediction by seismology prediction method 被引量:1
14
作者 王炜 吴耿锋 宋先月 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期210-215,共6页
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca... BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction. 展开更多
关键词 BP neural networks nonlinear relationship seismological method of earthquake prediction comprehensive earthquake prediction
下载PDF
An illustrated guide to:Parsimonious multi-scale full-waveform inversion
15
作者 Andreas Fichtner Solvi Thrastarson +1 位作者 Dirk-Philip van Herwaarden Sebastian Noe 《Earthquake Science》 2024年第6期574-583,共10页
Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new ins... Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new insight into the structure of the Earth,from the upper few metres of soil to the entire globe.Motivated by these successes,the technology is now being translated to medical ultrasound and non-destructive testing.Despite remarkable progress,the computational cost of fullwaveform inversion continues to be a major concern.It limits the amount of data that can be exploited,and it largely inhibits quantitative and comprehensive uncertainty analyses.These notes complement a presentation on recent developments in full-waveform inversion that are intended to reduce computational cost and assimilate more data,thereby improving tomographic resolution.The suite of strategies includes flexible and user-friendly spectral-element simulations,the design of wavefieldadapted meshes that harness prior information on wavefield geometry,dynamic mini-batch optimisation that naturally takes advantage of data redundancies,and collaborative multi-scale updating to jointly constrain crustal and mantle structure. 展开更多
关键词 EARTH MODEL seismology full-waveform INVERSION
下载PDF
Spectral-Element andAdjointMethods in Seismology 被引量:15
16
作者 Jeroen Tromp Dimitri Komatitsch Qinya Liu 《Communications in Computational Physics》 SCIE 2008年第1期1-32,共32页
We provide an introduction to the use of the spectral-elementmethod (SEM)in seismology. Following a brief review of the basic equations that govern seismicwave propagation, we discuss in some detail how these equation... We provide an introduction to the use of the spectral-elementmethod (SEM)in seismology. Following a brief review of the basic equations that govern seismicwave propagation, we discuss in some detail how these equations may be solved numericallybased upon the SEM to address the forward problem in seismology. Examplesof synthetic seismograms calculated based upon the SEM are compared to datarecorded by the Global Seismographic Network. Finally, we discuss the challenge ofusing the remaining differences between the data and the synthetic seismograms toconstrain better Earth models and source descriptions. This leads naturally to adjointmethods, which provide a practical approach to this formidable computational challengeand enables seismologists to tackle the inverse problem. 展开更多
关键词 Spectral-element method adjoint methods seismology inverse problems numerical simulations.
原文传递
Real-time seismology for the 05/12/2008 Wenchuan earthquake of China: A retrospective view 被引量:2
17
作者 Paul SOMMERVILLE 《Science China Earth Sciences》 SCIE EI CAS 2009年第2期155-165,共11页
The devastating 05/12/2008 Wenchuan earthquake (Mw7.9) in Sichuan Province of China showed very few precursory phenomena and occurred on a fault system once assigned to be of moderate long term seismic risk. Given the... The devastating 05/12/2008 Wenchuan earthquake (Mw7.9) in Sichuan Province of China showed very few precursory phenomena and occurred on a fault system once assigned to be of moderate long term seismic risk. Given the existing coverage of seismograph stations in Sichuan Province, real-time seis-mology could have been effective in avoiding some earthquake damage and helping post-earthquake emergency response. In a retrospective view, we demonstrated that the epicenter can be located with 20 km accuracy using just two broadband stations with three-component, which takes only about 10 s after the onset of the earthquake. Initial magnitude is estimated to be M7 with the Tc measurement over first 4 seconds of P waves. Better magnitude estimate can be obtained within 2 min by modeling Pnl waves for stations about 500 km away where the S waveforms are clipped. The rupture area is well revealed by teleseismically-recorded >M5 early aftershocks within two hours after the mainshock. Within a few hours, teleseismic body waves were inverted to derive a more detailed rupture process and the finite fault model can be readily used to calculate ground motions, thus providing vital information for rescue efforts in the case where no real-time strong motion records are available. 展开更多
关键词 real-time seismology EARTHQUAKE early WARNING STRONG ground motion rapid location
原文传递
Application and discussion of statistical seismology in probabilistic seismic hazard assessment studies 被引量:1
18
作者 Weilai PEI Shiyong ZHOU +2 位作者 Jiancang ZHUANG Ziyao XIONG Jian PIAO 《Science China Earth Sciences》 SCIE EI CSCD 2022年第2期257-268,共12页
Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic ear... Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake prediction propels the construction and development of modern seismology;however, current deterministic earthquake prediction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occurrences and constructing earthquake risk statistical prediction models have become significant;particularly for evaluating earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the obtained insight. Since the 21 st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8 earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its development. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should be effective. Particularly, the application of seismic hazard assessment based on ETAS(epidemic type aftershock sequence)should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas and low seismic hazard areas with thick sedimentary zones. 展开更多
关键词 Statistical seismology Earthquake prediction Probabilistic seismic hazard assessment Stress release model Epidemic type aftershock sequence model
原文传递
Applications of Engineering Seismology for Site Characterization 被引量:1
19
作者 Oz Yilmaz Murat Eser Mehmet Berilgen 《Journal of China University of Geosciences》 SCIE CSCD 2009年第3期546-554,共9页
We determined the seismic model of the soil column within a residential project site in Istanbul, Turkey. Specifically, we conducted a refraction seismic survey at 20 locations using a receiver spread with 484.5-Hz ve... We determined the seismic model of the soil column within a residential project site in Istanbul, Turkey. Specifically, we conducted a refraction seismic survey at 20 locations using a receiver spread with 484.5-Hz vertical geophones at 2-m intervals. We applied nonlinear tomography to first-arrival times to estimate the P-wave velocity-depth profiles and performed Rayleigh-wave inversion to estimate the S-wave velocity-depth profiles down to a depth of 30 m at each of the locations. We then combined the seismic velocities with the geotechnical borehole information regarding the lithology of the soil column and determined the site-specific geotechnical earthquake engineering parameters for the site. Specifically, we computed the maximum soil amplification ratio, maximum surface-bedrock acceleration ratio, depth interval of significant acceleration, maximum soil-rock response ratio, and design spectrum periods TA-TB. We conducted reflection seismic surveys along five line traverses with lengths between 150 and 300 m and delineated landslide failure surfaces within the site. We recorded shot gathers at 2-m intervals along each of the seismic line traverses using a receiver spread with 4 840-Hz vertical geophones at 2-m intervals. We applied nonlinear tomography to first-arrival times to estimate a P-wave velocity-depth model and analyzed the reflected waves to obtain a seismic image of the deep near-surface along each of the line traverses. 展开更多
关键词 engineering seismology geotechnical engineering earthquake engineering shear-wave velocity.
原文传递
The accessible seismological dataset of a high-density 2D seismic array along Anninghe fault
20
作者 Weifan Lu Zeyan Zhao +3 位作者 Han Yue Shiyong Zhou Jianping Wu Xiaodong Song 《Earthquake Science》 2024年第1期67-77,共11页
The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming su... The scientific goal of the Anninghe seismic array is to investigate the detailed geometry of the Anninghe fault and the velocity structure of the fault zone.This 2D seismic array is composed of 161 stations forming sub-rectangular geometry along the Anninghe fault,which covers 50 km and 150 km in the fault normal and strike directions,respectively,with~5 km intervals.The data were collected between June 2020 and June 2021,with some level of temporal gaps.Two types of instruments,i.e.QS-05A and SmartSolo,are used in this array.Data quality and examples of seismograms are provided in this paper.After the data protection period ends(expected in June 2024),researchers can request a dataset from the National Earthquake Science Data Center. 展开更多
关键词 Anninghe fault seismological dataset data share
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部