期刊文献+
共找到6,283篇文章
< 1 2 250 >
每页显示 20 50 100
Objective Model Selection in Physics: Exploring the Finite Information Quantity Approach
1
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2024年第5期1848-1889,共42页
Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Informati... Traditional methods for selecting models in experimental data analysis are susceptible to researcher bias, hindering exploration of alternative explanations and potentially leading to overfitting. The Finite Information Quantity (FIQ) approach offers a novel solution by acknowledging the inherent limitations in information processing capacity of physical systems. This framework facilitates the development of objective criteria for model selection (comparative uncertainty) and paves the way for a more comprehensive understanding of phenomena through exploring diverse explanations. This work presents a detailed comparison of the FIQ approach with ten established model selection methods, highlighting the advantages and limitations of each. We demonstrate the potential of FIQ to enhance the objectivity and robustness of scientific inquiry through three practical examples: selecting appropriate models for measuring fundamental constants, sound velocity, and underwater electrical discharges. Further research is warranted to explore the full applicability of FIQ across various scientific disciplines. 展开更多
关键词 Comparative Uncertainty Finite Information Quantity Formulating a model Measurement Accuracy Limit Objective model selection
下载PDF
A general evaluation system for optimal selection performance of radar clutter model
2
作者 YANG Wei ZHANG Liang +2 位作者 YANG Liru ZHANG Wenpeng SHEN Qinmu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1520-1525,共6页
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati... The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection. 展开更多
关键词 radar clutter clutter characterization model model selection performance evaluation.
下载PDF
MultiDMet: Designing a Hybrid Multidimensional Metrics Framework to Predictive Modeling for Performance Evaluation and Feature Selection
3
作者 Tesfay Gidey Hailu Taye Abdulkadir Edris 《Intelligent Information Management》 2023年第6期391-425,共35页
In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making d... In a competitive digital age where data volumes are increasing with time, the ability to extract meaningful knowledge from high-dimensional data using machine learning (ML) and data mining (DM) techniques and making decisions based on the extracted knowledge is becoming increasingly important in all business domains. Nevertheless, high-dimensional data remains a major challenge for classification algorithms due to its high computational cost and storage requirements. The 2016 Demographic and Health Survey of Ethiopia (EDHS 2016) used as the data source for this study which is publicly available contains several features that may not be relevant to the prediction task. In this paper, we developed a hybrid multidimensional metrics framework for predictive modeling for both model performance evaluation and feature selection to overcome the feature selection challenges and select the best model among the available models in DM and ML. The proposed hybrid metrics were used to measure the efficiency of the predictive models. Experimental results show that the decision tree algorithm is the most efficient model. The higher score of HMM (m, r) = 0.47 illustrates the overall significant model that encompasses almost all the user’s requirements, unlike the classical metrics that use a criterion to select the most appropriate model. On the other hand, the ANNs were found to be the most computationally intensive for our prediction task. Moreover, the type of data and the class size of the dataset (unbalanced data) have a significant impact on the efficiency of the model, especially on the computational cost, and the interpretability of the parameters of the model would be hampered. And the efficiency of the predictive model could be improved with other feature selection algorithms (especially hybrid metrics) considering the experts of the knowledge domain, as the understanding of the business domain has a significant impact. 展开更多
关键词 Predictive modeling Hybrid Metrics Feature selection model selection Algorithm Analysis Machine Learning
下载PDF
Genomic Selection for Frogeye Leaf Spot Resistance in Soybean
4
作者 Yao Lanning Chen Yizhi +4 位作者 Li Haochen Zhang Yue Xia Mingyu Ning Shicheng Ning Hailong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期11-19,共9页
Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of... Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of soybean, least absolute shrinkage and selection operator(LASSO) regression and stepwise regression were combined, and a genomic selection model was established for 40 002 SNP markers covering soybean genome and relative lesion area of soybean FLS. As a result, 68 molecular markers controlling soybean FLS were detected accurately, and the phenotypic contribution rate of these markers reached 82.45%. In this study, a model was established, which could be used directly to evaluate the resistance of soybean FLS and to select excellent offspring. This research method could also provide ideas and methods for other plants to breeding in disease resistance. 展开更多
关键词 LASSO regression stepwise regression genomic selection model SOYBEAN frogeye leaf spot(FLS)disease
下载PDF
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
5
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial Data Feature selection STANDARDIZATION Machine Learning models Hybrid models
下载PDF
Navigating Market Choices: Understanding Carrot Market Outlet Selection among Smallholder Farmers in Kenya
6
作者 Hillary Kiprotich Ngeno Ngenoh Evans +1 位作者 Oscar Ayuya Ingasia Hillary K. Bett 《Agricultural Sciences》 2024年第6期676-703,共28页
This research delves into the hurdles and strategies aimed at augmenting the market involvement of smallholder carrot farmers in Nakuru County, Kenya. Employing a Multinomial Logit (MNL) model, it scrutinizes the fact... This research delves into the hurdles and strategies aimed at augmenting the market involvement of smallholder carrot farmers in Nakuru County, Kenya. Employing a Multinomial Logit (MNL) model, it scrutinizes the factors influencing the selection of marketing outlets among carrot farmers. The findings unveil that a significant majority (81%) of surveyed farmers actively participate in diverse market outlets, encompassing the farm gate, cleaning point, local market, external market, and export market. Notably, pivotal buyers include aggregators, brokers, wholesalers, retailers, and consumers, with transactions predominantly occurring at the farm level. Additionally, the analysis discerns substantial influences of socio-economic characteristics, experiential factors, and geographical proximity on farmers’ choices of market outlets. Specifically, gender, age, land size, farming experience, and distance to markets emerge as critical determinants. Moreover, the study delves into the examination of market margins along the carrot value chain, shedding light on the potential profitability of carrot farming in the region. Remarkably, higher average gross margins are identified in export and external markets, signaling lucrative prospects for farmers targeting these segments. However, disparities in profit distribution between farmers and traders underscore the necessity for interventions to ensure equitable value distribution throughout the value chain. These findings underscore the imperative for tailored interventions to tackle challenges and foster inclusive agricultural development. Strategies such as farmer organizations, contracting, and vertical integration are advocated to enhance market access and profitability for smallholder carrot farmers. Thus, this study enriches our comprehension of the dynamics within carrot value chains and provides valuable insights for policymakers and development practitioners aiming to uplift rural livelihoods and bolster food security. 展开更多
关键词 Market Outlet selection Smallholder Farmers Multinomial Logit model Determinants Carrot Value Chain
下载PDF
Model Selection of Gas Turbine for Large Scale Gas-Fired Combined Cycle Power Plant
7
作者 何语平 《Electricity》 2003年第4期36-39,共4页
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr... This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies. 展开更多
关键词 natural gas combined cycle power plant unit model selection
下载PDF
MODEL SELECTION METHOD BASED ON MAXIMAL INFORMATION COEFFICIENT OF RESIDUALS 被引量:4
8
作者 谭秋衡 蒋杭进 丁义明 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期579-592,共14页
The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made befor... The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made before using the traditional ones. In this ar- ticle, we give a new model selection criterion, based on the assumption that noise term in the model is independent with explanatory variables, of minimizing the association strength between regression residuals and the response, with fewer assumptions. Maximal Information Coe^cient (MIC), a recently proposed dependence measure, captures a wide range of associ- ations, and gives almost the same score to different type of relationships with equal noise, so MIC is used to measure the association strength. Furthermore, partial maximal information coefficient (PMIC) is introduced to capture the association between two variables removing a third controlling random variable. In addition, the definition of general partial relationship is given. 展开更多
关键词 model selection RESIDUAL maximal information coefficient partial maximalinformation coefficient
下载PDF
Comparison of six statistical approaches in the selection of appropriate fish growth models 被引量:6
9
作者 朱立新 李丽芳 梁振林 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第3期457-467,共11页
The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches inc... The performance of six statistical approaches,which can be used for selection of the best model to describe the growth of individual fish,was analyzed using simulated and real length-at-age data.The six approaches include coefficient of determination(R2),adjusted coefficient of determination(adj.-R2),root mean squared error(RMSE),Akaike's information criterion(AIC),bias correction of AIC(AICc) and Bayesian information criterion(BIC).The simulation data were generated by five growth models with different numbers of parameters.Four sets of real data were taken from the literature.The parameters in each of the five growth models were estimated using the maximum likelihood method under the assumption of the additive error structure for the data.The best supported model by the data was identified using each of the six approaches.The results show that R2 and RMSE have the same properties and perform worst.The sample size has an effect on the performance of adj.-R2,AIC,AICc and BIC.Adj.-R2 does better in small samples than in large samples.AIC is not suitable to use in small samples and tends to select more complex model when the sample size becomes large.AICc and BIC have best performance in small and large sample cases,respectively.Use of AICc or BIC is recommended for selection of fish growth model according to the size of the length-at-age data. 展开更多
关键词 growth model model selection statistical approach Akalke's information criterion Bayesian information criterion
下载PDF
Model Selection in Estimation of Covariance Functions for Growth of Angora Goats 被引量:2
10
作者 LIU Wen-zhong ZHANG Yuan ZHOU Zhong-xiao 《Agricultural Sciences in China》 CAS CSCD 2010年第7期1041-1049,共9页
Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,differe... Covariance functions have been proposed as an alternative to model longitudinal data in animal breeding because of their various merits in comparison to the classical analytical methods.In practical estimation,different models and polynomial orders fitted can influence the estimates of covariance functions and thus genetic parameters.The objective of this study was to select model for estimation of covariance functions for body weights of Angora goats at 7 time points.Covariance functions were estimated by fitting 6 random regression models with birth year,birth month,sex,age of dam,birth type,and relative birth date as fixed effects.Random effects involved were direct and maternal additive genetic,and animal and maternal permanent environmental effects with different orders of fit.Selection of model and orders of fit were carried out by likelihood ratio test and 4 types of information criteria.The results showed that model with 6 orders of polynomial fit for direct additive genetic and animal permanent environmental effects and 4 and 5 orders for maternal genetic and permanent environmental effects,respectively,were preferable for estimation of covariance functions.Models with and without maternal effects influenced the estimates of covariance functions greatly.Maternal permanent environmental effect does not explain the variation of all permanent environments,well suggesting different sources of permanent environmental effects also has large influence on covariance function estimates. 展开更多
关键词 Angora goats GROWTH covariance function model selection random regression model
下载PDF
Noise in Genotype Selection Model 被引量:1
11
作者 AIBao-Quan CHENWei +3 位作者 WANGXian-Ju LIUGuo-Tao WENDe-Hua LIULiang-Gang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期765-768,共4页
We study the steady state properties ofa genotype selection model in presence of correlated Gaussian whitenoise. The effect of the noise on the genotype selection model is discussed. It is found that correlated noise ... We study the steady state properties ofa genotype selection model in presence of correlated Gaussian whitenoise. The effect of the noise on the genotype selection model is discussed. It is found that correlated noise can breakthe balance of gene selection and induce the phase transition which can makes us select one type gene haploid from agene group. 展开更多
关键词 genotype selection model correlated noise Fokker-Planck equation
下载PDF
基于JABBA-Select模型对不同时间序列渔获量和渔船效应的印度洋长鳍金枪鱼资源评估 被引量:1
12
作者 杨诗玉 冯佶 朱江峰 《大连海洋大学学报》 CAS CSCD 北大核心 2023年第5期828-838,共11页
为了解印度洋长鳍金枪鱼(Thunnus alalunga)种群动态及资源开发利用状况,采用结合了种群生物学参数和渔业选择性的JABBA-Select模型,分别从渔获量的不同时间序列、单位捕捞努力量渔获量(CPUE)标准化过程是否考虑渔船效应两个方面,考察... 为了解印度洋长鳍金枪鱼(Thunnus alalunga)种群动态及资源开发利用状况,采用结合了种群生物学参数和渔业选择性的JABBA-Select模型,分别从渔获量的不同时间序列、单位捕捞努力量渔获量(CPUE)标准化过程是否考虑渔船效应两个方面,考察对印度洋长鳍金枪鱼资源量评估结果的影响。结果表明:当模型选取1979-2020年短时间序列渔获量数据时,CPUE的拟合效果更好;而当模型选取长时间序列渔获量数据时,CPUE对数残差较大,拟合效果较差;同时考虑渔船效应的CPUE数据对模型拟合效果表现更佳;2020年印度洋长鳍金枪鱼未发生资源型过度捕捞(B_(SB)/B_(SB),MSY>1),也未发生捕捞型过度捕捞(F/F_(MSY)<1);模型重要参数的敏感性分析显示,种群评估结果对陡度(steepness,h)较稳健,但对自然死亡率(natural mortality,M)较敏感。研究表明,不同时间序列的渔获量对资源评估结果存在较大差异,考虑渔船效应的标准化CPUE可以更好地反映种群资源变动趋势,减少种群评估结果的不确定性。 展开更多
关键词 长鳍金枪鱼 JABBA-select模型 渔船效应 资源评估 印度洋
下载PDF
Selection of the Linear Regression Model According to the Parameter Estimation 被引量:31
13
作者 Sun Dao-de Department of Computer, Fuyang Teachers College, Anhui 236032,China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期400-405,共6页
In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calcula... In this paper, based on the theory of parameter estimation, we give a selection method and, in a sense of a good character of the parameter estimation, we think that it is very reasonable. Moreover, we offer a calculation method of selection statistic and an applied example. 展开更多
关键词 parameter estimation linear regression model selection criterion mean square error
下载PDF
Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills 被引量:3
14
作者 汤健 柴天佑 +1 位作者 刘卓 余文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2020-2028,共9页
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ... Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones. 展开更多
关键词 Nonlinear latent feature extraction Kernel partial least squares selective ensemble modeling Least squares support vector machines Material to ball volume ratio
下载PDF
Improved social force model based on exit selection for microscopic pedestrian simulation in subway station 被引量:4
15
作者 郑勋 李海鹰 +2 位作者 孟令云 许心越 陈旭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4490-4497,共8页
An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant... An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station. 展开更多
关键词 EXIT selectION SOCIAL FORCE model EXIT WIDTH micro
下载PDF
Submicro-battery effect and selective bio-oxidation model of gold-bearing arsenopyrite by Thiobacillus ferrooxidans 被引量:4
16
作者 杨洪英 杨立 +3 位作者 赵玉山 陈刚 吕久吉 范有静 《中国有色金属学会会刊:英文版》 CSCD 2002年第6期1199-1202,共4页
Through the study by electronic probe it was found that many new cracks and holes appear on the surface of gold bearing arsenopyrite crystal oxidized by Thiobacillus ferrooxidans, which are along with some directions.... Through the study by electronic probe it was found that many new cracks and holes appear on the surface of gold bearing arsenopyrite crystal oxidized by Thiobacillus ferrooxidans, which are along with some directions. Then the selective bio oxidation model of gold bearing arsenopyrite was set up. The selective bio oxidation resulting from the submicro battery effect of gold/ arsenopyrite mineral pairs naturally forms in the gold bearing arsenopyrite crystal. Thiobacillus ferrooxidans has priority to oxidize the place of gold rich and oxidizes selectedly along with the crystal border, crystal face and crack. The bacteria oxidation process of gold bearing arsenopyrite is divided into three stages: the first stage is the surface oxidation, the second stage is restraining oxidation and the third stage is the filament oxidation, bacteria oxidize along with cracks of arsenopyrite. 展开更多
关键词 选择性生物氧化模型 亚微米电池效应 砷黄铁矿 铁氧化剂
下载PDF
ON THE GLOBAL STABILITY CONJECTURE OF THE GENOTYPE SELECTION MODEL
17
作者 S.H. Saker 《Acta Mathematica Scientia》 SCIE CSCD 2011年第2期512-528,共17页
In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an... In 1994, Grove, Kocic, Ladas, and Levin conjectured that the local stability and global stability conditions of the fixed point -y= 1/2 in the genotype selection model should be equivalent. In this article, we give an affirmative answer to this conjecture and prove that local stability implies global stability. Some illustrative examples are included to demonstrate the validity and applicability of the results. 展开更多
关键词 Local stability global stability discrete genotype selection model
下载PDF
Transitions in a genotype selection model driven by coloured noises
18
作者 王参军 梅冬成 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期479-485,共7页
This paper investigates a genotype selection model subjected to both a multiplicative coloured noise and an additive coloured noise with different correlation time τ1 and τ2 by means of the numerical technique. By d... This paper investigates a genotype selection model subjected to both a multiplicative coloured noise and an additive coloured noise with different correlation time τ1 and τ2 by means of the numerical technique. By directly simulating the Langevin Equation, the following results are obtained. (1) The multiplicative coloured noise dominates, however, the effect of the additive coloured noise is not neglected in the practical gene selection process. The selection rate μ decides that the selection is propitious to gene A haploid or gene B haploid. (2) The additive coloured noise intensity and the correlation time τ2 play opposite roles. It is noted that α and τ2 can not separate the single peak, while can make the peak disappear and ^-2 can make the peak be sharp. (3) The multiplicative coloured noise intensity D and the correlation time τ1 can induce phase transition, at the same time they play opposite roles and the reentrance phenomenon appears. In this case, it is easy to select one type haploid from the group with increasing D and decreasing τ1. 展开更多
关键词 genotype selection model coloured noise stationary probability distribution
下载PDF
Turing pattern selection in a reaction-diffusion epidemic model 被引量:3
19
作者 王玮明 刘厚业 +1 位作者 蔡永丽 李镇清 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期286-297,共12页
We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, ... We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, which determines the stability of amplitudes towards uniform and inhomogeneous perturbations. Second, it illustrates all five categories of Turing patterns close to the onset of Turing bifurcation via numerical simulations which indicates that the model dynamics exhibits complex pattern replication: on increasing the control parameter v, the sequence "H0 hexagons → H0-hexagon-stripe mixtures →stripes → Hπ-hexagon-stripe mixtures → Hπ hexagons" is observed. This may enrich the pattern dynamics in a diffusive epidemic model. 展开更多
关键词 epidemic model pattern selection amplitude equations T^ring instability
下载PDF
Cox模型中基于Model-X Knockoffs的高维控制变量选择方法
20
作者 黄河 潘莹丽 《统计与决策》 CSSCI 北大核心 2023年第5期16-21,共6页
在生物医学、临床试验和流行病学等领域的研究中,由于获得生存数据的试验设计、观测时间的局限,以及观测对象在进入或退出试验时的个体差异等方面的原因,与所关注事件的发生时间相关的数据经常存在右删失。基于右删失生存数据解析协变... 在生物医学、临床试验和流行病学等领域的研究中,由于获得生存数据的试验设计、观测时间的局限,以及观测对象在进入或退出试验时的个体差异等方面的原因,与所关注事件的发生时间相关的数据经常存在右删失。基于右删失生存数据解析协变量和生存时间的关系时,应用最为广泛的统计模型是Cox模型。随着科学技术的进步,数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,数据的维度通常可以达到成百上千维,甚至更高。文章提出一种Cox模型中基于Model-X Knockoffs的高维控制变量选择方法。首先基于Knockoffs框架建立一个Knockoffs变量,并基于原始协变量和其相应的Knockoffs变量构造一个正则化的目标函数,然后通过求解目标函数的最优解构造一个统计量和基于数据的阈值,最后进行变量选择。模拟分析和实证研究结果表明:所提方法可以在变量选择的同时提供可靠的FDR控制,优于传统的LASSO方法。 展开更多
关键词 COX模型 model-X Knockoffs FDR控制 变量选择
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部