期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Modified Ant Colony Optimization Algorithm for Tumor Marker Gene Selection 被引量:7
1
作者 Hualong Yu Guochang Gu Haibo Liu Jing Shen Jing Zhao 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2009年第4期200-208,共9页
Microarray data are often extremely asymmetric in dimensionality, such as thousands or even tens of thousands of genes but only a few hundreds of samples or less. Such extreme asymmetry between the dimensionality of g... Microarray data are often extremely asymmetric in dimensionality, such as thousands or even tens of thousands of genes but only a few hundreds of samples or less. Such extreme asymmetry between the dimensionality of genes and samples can lead to inaccurate diagnosis of disease in clinic. Therefore, it has been shown that selecting a small set of marker genes can lead to improved classification accuracy. In this paper, a simple modified ant colony optimization (ACO) algorithm is proposed to select tumorelated marker genes, and support vector machine (SVM) is used as classifier to evaluate the performance of the extracted gene subset. Experimental results on several benchmark tumor microarray datasets showed that the proposed approach produces better recognition with fewer marker genes than many other methods. It has been demonstrated that the modified ACO is a useful tool for selecting marker genes and mining high dimension data 展开更多
关键词 microarray data ant colony optimization marker gene selection support vector machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部