A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports a...A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.展开更多
A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded on...A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.展开更多
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-...A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-antenna(AFA) module,and the polarization directions of the upper and lower antennas in each AFA module are orthogonal to each other, so the PR-FSS can achieve frequency selection and 90 degrees polarization rotation at the same time. The numerical simulation demonstrate that the anticipated frequency selection and polarization rotation are realized by the PR-FSS in the frequency band from 8.84 GHz to 10.30 GHz with a relative bandwidth of 15.26%, and the maximum insertion loss in the pass band is only 0.17 d B. Finally, one effective experiment validation is carried out, a reasonable agreement is observed between the experimental and simulated results except for a slight deviation caused by fabrication error and measurement tolerance.展开更多
Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these ante...Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.展开更多
Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into...Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) sys...Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.展开更多
The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the cro...The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the crowded spectrum, the time-varying channels, and the malicious intelligent jamming. The existing frequency hopping, automatic link establishment and some new anti-jamming technologies can not completely solve the above problems. In this article, we adopt deep reinforcement learning to solve this intractable challenge. First, the combination of the spectrum state and the channel gain state is defined as the complex environmental state, and the Markov characteristic of defined state is analyzed and proved. Then, considering that the spectrum state and channel gain state are heterogeneous information, a new deep Q network(DQN) framework is designed, which contains multiple sub-networks to process different kinds of information. Finally, aiming to improve the learning speed and efficiency, the optimization targets of corresponding sub-networks are reasonably designed, and a heterogeneous information fusion deep reinforcement learning(HIF-DRL) algorithm is designed for the specific frequency selection. Simulation results show that the proposed algorithm performs well in channel prediction, jamming avoidance and frequency channel selection.展开更多
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to wi...An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.展开更多
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substr...We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.展开更多
In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in ...In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.展开更多
This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element i...This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.展开更多
In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method...In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.展开更多
Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-j...Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer,which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency.Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
Tunnel seismic detection methods are effective for obtaining the geological structure around the tunnel face,which is critical for safe construction and disaster mitigation in tunnel engineering.However,there is often...Tunnel seismic detection methods are effective for obtaining the geological structure around the tunnel face,which is critical for safe construction and disaster mitigation in tunnel engineering.However,there is often a lack of accuracy in the acquired geological information and physical properties ahead of the tunnel face in the current tunnel seismic detection methods.Thus,we apply a frequency-domain acoustic full-waveform inversion(FWI)method to obtain high-resolution results for the tunnel structure.We discuss the influence of the frequency group selection strategy and the tunnel observation system settings regarding the inversion results and determine the structural imaging and physical property parameter inversion of abnormal geological bodies ahead of the tunnel face.Based on the conventional strategies of frequency-domain acoustic FWI,we propose a frequency group selection strategy that combines a low-frequency selection covering the vertical wavenumber and a high-frequency selection of antialiasing.This strategy can effectively obtain the spatial structure and physical parameters of the geology ahead of the tunnel face and improve the inversion resolution.In addition,by linearly increasing the side length of the tunnel observation system,we share the influence of the length of the two sides of the observation systems of different tunnels on the inversion results.We found out that the inversion results are the best when the side length is approximately five times the width of the tunnel face,and the influence of increasing the side observation length beyond this range on the inversion results can be ignored.Finally,based on this approach,we invert for the complex multi-stratum model,and an accurate structure and physical property parameters of the complex stratum ahead of the tunnel face are obtained,which verifies the feasibility of the proposed method.展开更多
An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loa...An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.展开更多
We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion...We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion loss less than 0.4 dB, and separation between adjacent channels more than 20 dB for either TE or TM incidence. Firstly, we briefly introduce the disadvantages of two types of FSS filter: waveguide-array FSS and printed FSS, which are commonly employed in the millimeter and sub-millimeter wave band. In order to meet the insertion loss requirement and specified spectral transmission response, we adopt a filter composed of two closely spaced freestanding metal plates, which con- tains an array of resonant ring slot elements. Computer simulation technology (CST) is used to optimize the structural dimensions of the resonant unit and interlayer separation. Numerical results show that these FSS filters exhibit trans- mission loss of less than 0.4 dB and separation between adjacent channels of more than 20 dB. Simulated transmission coefficients are in close agreement with the required specification, and even exceed the performance specifications.展开更多
基金supported by the National key research and development program of China(No.2021YFB2900401)by the National Natural Science Foundation of China(No.61861046)+1 种基金the key Natural Science Foundation of shenzhen(No.JCYJ20220818102209020)the key research and development program of shenzhen(No.ZDSYS20210623091807023)。
文摘A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.
文摘A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
基金supported by the National Natural Science Foundation of China (Grant No. 62072378)Xi’an Science and Technology Plan Project, China (Grant No. GXYD20.4)。
文摘A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-antenna(AFA) module,and the polarization directions of the upper and lower antennas in each AFA module are orthogonal to each other, so the PR-FSS can achieve frequency selection and 90 degrees polarization rotation at the same time. The numerical simulation demonstrate that the anticipated frequency selection and polarization rotation are realized by the PR-FSS in the frequency band from 8.84 GHz to 10.30 GHz with a relative bandwidth of 15.26%, and the maximum insertion loss in the pass band is only 0.17 d B. Finally, one effective experiment validation is carried out, a reasonable agreement is observed between the experimental and simulated results except for a slight deviation caused by fabrication error and measurement tolerance.
文摘Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.
基金This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)National Natural Science Foundation of China(Grant No.51835006)+6 种基金the National Natural Science Foundation of China(Grant Nos.52222509,52105301,U19A20103)Jilin University Science and Technology Innovative Research Team(Grant No.2020TD-03)Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ03)the Natural Science Foundation of Jilin Province(Grant No.20220101220JC)Education Department of Jilin Province(Grant No.JJKH20220979KJ)Graduate Innovation Fund of Jilin University(2023CX077)supported by“Fundamental Research Funds for the Central Universities.”。
文摘Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
基金The National Natural Science Foundation of China(No.60702028)the National High Technology Research and Development Program of China(863Program)(No.2007AA01Z268)
文摘Based on the frequency domain training sequences, the polynomial-based carrier frequency offset (CFO) estimation in multiple-input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems is extensively investigated. By designing the training sequences to meet certain conditions and exploiting the Hermitian and real symmetric properties of the corresponding matrices, it is found that the roots of the polynomials corresponding to the cost functions are pairwise and that both meger CFO and fractional CFO can be estimated by the direct polynomial rooting approach. By analyzing the polynomials corresponding to the cost functions and their derivatives, it is shown that they have a common polynomial factor and the former can be expressed in a quadratic form of the common polynomial factor. Analytical results further reveal that the derivative polynomial rooting approach is equivalent to the direct one in estimation at the same signal-to-noise ratio(SNR) value and that the latter is superior to the former in complexity. Simulation results agree well with analytical results.
基金supported by Guangxi key Laboratory Fund of Embedded Technology and Intelligent System under Grant No. 2018B-1the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034+1 种基金the National Natural Science Foundation of China under Grant No. 61771488, No. 61671473 and No. 61631020in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratory
文摘The high-frequency(HF) communication is one of essential communication methods for military and emergency application. However, the selection of communication frequency channel is always a difficult problem as the crowded spectrum, the time-varying channels, and the malicious intelligent jamming. The existing frequency hopping, automatic link establishment and some new anti-jamming technologies can not completely solve the above problems. In this article, we adopt deep reinforcement learning to solve this intractable challenge. First, the combination of the spectrum state and the channel gain state is defined as the complex environmental state, and the Markov characteristic of defined state is analyzed and proved. Then, considering that the spectrum state and channel gain state are heterogeneous information, a new deep Q network(DQN) framework is designed, which contains multiple sub-networks to process different kinds of information. Finally, aiming to improve the learning speed and efficiency, the optimization targets of corresponding sub-networks are reasonably designed, and a heterogeneous information fusion deep reinforcement learning(HIF-DRL) algorithm is designed for the specific frequency selection. Simulation results show that the proposed algorithm performs well in channel prediction, jamming avoidance and frequency channel selection.
文摘An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.
基金supported by the National Natural Science Foundation of China (Grant No. 51207060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004)
文摘We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
基金supported by the National Natural Science Foundation of China(Grant No.61401424)
文摘In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.
基金supported by the National Defense Innovation Foundation of Chinese Academy of Sciences (Grant No CXJJ-149)
文摘This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172012)
文摘In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.
基金supported by National Natural Science foundation of China (Grant Nos. 51371103 and 51231004)National Basic Research Program of China (Grant No. 2010CB832905)+1 种基金National Hi-tech (R&D) Project of China (Grant Nos. 2012AA03A706, 2013AA030801)the Research Project of Chinese Ministry of Education (No. 113007A)
文摘Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer,which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency.Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(41704146)the Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(CUGL180816)。
文摘Tunnel seismic detection methods are effective for obtaining the geological structure around the tunnel face,which is critical for safe construction and disaster mitigation in tunnel engineering.However,there is often a lack of accuracy in the acquired geological information and physical properties ahead of the tunnel face in the current tunnel seismic detection methods.Thus,we apply a frequency-domain acoustic full-waveform inversion(FWI)method to obtain high-resolution results for the tunnel structure.We discuss the influence of the frequency group selection strategy and the tunnel observation system settings regarding the inversion results and determine the structural imaging and physical property parameter inversion of abnormal geological bodies ahead of the tunnel face.Based on the conventional strategies of frequency-domain acoustic FWI,we propose a frequency group selection strategy that combines a low-frequency selection covering the vertical wavenumber and a high-frequency selection of antialiasing.This strategy can effectively obtain the spatial structure and physical parameters of the geology ahead of the tunnel face and improve the inversion resolution.In addition,by linearly increasing the side length of the tunnel observation system,we share the influence of the length of the two sides of the observation systems of different tunnels on the inversion results.We found out that the inversion results are the best when the side length is approximately five times the width of the tunnel face,and the influence of increasing the side observation length beyond this range on the inversion results can be ignored.Finally,based on this approach,we invert for the complex multi-stratum model,and an accurate structure and physical property parameters of the complex stratum ahead of the tunnel face are obtained,which verifies the feasibility of the proposed method.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.61271250 and 61202490)
文摘An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.
文摘We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion loss less than 0.4 dB, and separation between adjacent channels more than 20 dB for either TE or TM incidence. Firstly, we briefly introduce the disadvantages of two types of FSS filter: waveguide-array FSS and printed FSS, which are commonly employed in the millimeter and sub-millimeter wave band. In order to meet the insertion loss requirement and specified spectral transmission response, we adopt a filter composed of two closely spaced freestanding metal plates, which con- tains an array of resonant ring slot elements. Computer simulation technology (CST) is used to optimize the structural dimensions of the resonant unit and interlayer separation. Numerical results show that these FSS filters exhibit trans- mission loss of less than 0.4 dB and separation between adjacent channels of more than 20 dB. Simulated transmission coefficients are in close agreement with the required specification, and even exceed the performance specifications.