期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An integrated method for matching forest machinery and a weight-value adjustment
1
作者 Dan Li 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期683-688,共6页
Proper matching of forestry machinery is important when raising mechanization levels for forestry production. In the matching process, forestry machinery needs not only expertise, but also improved methods for solving... Proper matching of forestry machinery is important when raising mechanization levels for forestry production. In the matching process, forestry machinery needs not only expertise, but also improved methods for solving problems. I propose combination of case-based reasoning (CBR) and rule-based reasoning (RBR) by calculating the similarity of quantitative parameters of various forestry machines in an analytical and hierarchical process. I calculated the similarity of machin-ery used in forest industries to enable better selection and matching of equipment. I propose a weight-value adjusting method based on sums of squares of deviations in which the individual parameter weights were modified in the process of application. During the process of system design, I put forward a design method knowledge base and generated a dynamic web reasoning framework to integrate the processes of forest industry machinery selection and weight-value adjustment. This enables expansion of the scope of the complete system and enhancement of the reasoning efficiency. I demonstrate the validity and practicability of this method using a practical example. 展开更多
关键词 forest industry machinery selection and matching weight-value determination reasoning process integration method
下载PDF
森林优化特征选择算法的增强与扩展 被引量:9
2
作者 刘兆赓 李占山 +2 位作者 王丽 王涛 于海鸿 《软件学报》 EI CSCD 北大核心 2020年第5期1511-1524,共14页
特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林... 特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机性、全局播种阶段的人为参数设定,影响了该算法的准确率和维度缩减能力;同时,算法本身存在着高维数据处理能力不足的本质缺陷.从信息增益率的角度给出了一种初始化策略,在全局播种阶段,借用模拟退火控温函数的思想自动生成参数,并结合维度缩减率给出了适应度函数;同时,针对形成的优质森林采取贪心算法,形成一种特征选择算法EFSFOA(enhanced feature selection using forest optimization algorithm).此外,在面对高维数据的处理时,采用集成特征选择的方案形成了一个适用于EFSFOA的集成特征选择框架,使其能够有效处理高维数据特征选择问题.通过设计对比实验,验证了EFSFOA与FSFOA相比在分类准确率和维度缩减率上均有明显的提高,高维数据处理能力更是提高到了100 000维.将EFSFOA与近年来提出的比较高效的基于演化计算的特征选择方法进行对比,EFSFOA仍具有很强的竞争力. 展开更多
关键词 enhanced feature selection using forest optimization algorithm(EFSFOA) 高维 特征选择 演化计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部