A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the ne...A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.展开更多
Corrosion has been reported to occur in the copper tubes of heat ex-changers in multiple-circulation hot water supply systems. We have been investigating the applicability of high-strength Cu-0.65 mass% Sn-0.014 mass%...Corrosion has been reported to occur in the copper tubes of heat ex-changers in multiple-circulation hot water supply systems. We have been investigating the applicability of high-strength Cu-0.65 mass% Sn-0.014 mass% Zr-0.020 mass% P alloy to counteract this corrosion. Immersion tests, electrochemical measurements, and field tests were performed. Excellent corrosion resistance of the alloy was established under conditions with flowing water due to the formation of composite films containing tin. The alloy is expected to be better than copper as a corrosion-resistant material for heat exchanger tubes.展开更多
基金Project(2010DFA72740-06) supported by International Science & Technology Cooperation Program of China
文摘A district heating and hot water supply system is presented which synthetically utilizes geothermal energy,solar thermal energy and natural gas thermal energy.The multi-energy utilization system has been set at the new campus of Tianjin Polytechnic University(TPU),A couple of deep geothermal wells which are 2 300 m in depth were dug,Deep geothermal energy cascade utilization is achieved by two stages of plate heat exchangers(PHE) and two stages of water source heat pumps(WSHP).Shallow geothermal energy is used in assistant heating by two ground coupled heat pumps(GCHPs) with 580 vertical ground wells which are 120 m in depth.Solar thermal energy collected by vacuum tube arrays(VTAs) and geothermal energy are complementarily utilized to make domestic hot water.Superfluous solar energy can be stored in shallow soil for the GCHP utilization.The system can use fossil fuel thermal energy by two natural gas boilers(NGB) to assist in heating and making hot water.The heating energy efficiency was measured in the winter of 2010-2011.The coefficients of performance(COP) under different heating conditions are discussed.The performance of hot water production is tested in a local typical winter day and the solar thermal energy utilization factor is presented.The rusults show that the average system COP is 5.75 or 4.96 under different working conditions,and the typical solar energy utilization factor is 0.324.
文摘Corrosion has been reported to occur in the copper tubes of heat ex-changers in multiple-circulation hot water supply systems. We have been investigating the applicability of high-strength Cu-0.65 mass% Sn-0.014 mass% Zr-0.020 mass% P alloy to counteract this corrosion. Immersion tests, electrochemical measurements, and field tests were performed. Excellent corrosion resistance of the alloy was established under conditions with flowing water due to the formation of composite films containing tin. The alloy is expected to be better than copper as a corrosion-resistant material for heat exchanger tubes.