We discuss the set-valued dynamics related to the theory of functional equations.We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange inclusions.We improve and extend upon some of...We discuss the set-valued dynamics related to the theory of functional equations.We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange inclusions.We improve and extend upon some of the results in[13,20],but under weaker assumptions.Some applications of our results are also provided.展开更多
In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessar...In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.展开更多
In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there...In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.展开更多
A way to extend operators in spaces of continuous functions to spaces of continuous set_valued functions is proposed. This extension is developed through the Steiner selections of the set_valued functions. Their prope...A way to extend operators in spaces of continuous functions to spaces of continuous set_valued functions is proposed. This extension is developed through the Steiner selections of the set_valued functions. Their properties and characteristics of the convergence of sequences of operators of this class are studied. In Part Ⅱ of this series some applications to approximation theory will be shown.展开更多
On the basis of Part (Ⅰ) of this series some applications to the approximation of set_valued functions are obtained: Korovkin type theorems, a method to extend classical approximation operators to the set_valued sett...On the basis of Part (Ⅰ) of this series some applications to the approximation of set_valued functions are obtained: Korovkin type theorems, a method to extend classical approximation operators to the set_valued setting and a Jackson type estimate.展开更多
In this paper, we consider the following subadditive set-valued map F : X→P0(Y) :where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set...In this paper, we consider the following subadditive set-valued map F : X→P0(Y) :where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set-valued map.展开更多
In this paper, we discuss the unique existent problems of a additive selection map for the following map F:X→P0(Y):F(r∑i=1αixi)■r∑i=1αiF(xi),■xi∈K,i=1, ··· , r,where αi and αi (i = 1, ·...In this paper, we discuss the unique existent problems of a additive selection map for the following map F:X→P0(Y):F(r∑i=1αixi)■r∑i=1αiF(xi),■xi∈K,i=1, ··· , r,where αi and αi (i = 1, ··· , r) are all non-negative real numbers.展开更多
In this paper, we will construct a new class of subadditive set-valued maps and use Cantor theorem to prove that the set-valued map has an unique additive selection map when the set-valued map satisfies some certain c...In this paper, we will construct a new class of subadditive set-valued maps and use Cantor theorem to prove that the set-valued map has an unique additive selection map when the set-valued map satisfies some certain conditions, and then compare the obtained result with the well-known results.展开更多
By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz Joh...The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.展开更多
In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings a...In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.展开更多
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condit...A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.展开更多
The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function...The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.展开更多
Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we der...In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.展开更多
1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved....1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved. Nevertheless, this is not enough for the researches of biological species, demography, numerical simulation and attractors (see [1], [2]). It is necessary to know how the subsets of X moved. In this direction, we consider the set-valued discrete system associated to f, An+1 = (f|-)(An), n = 0,1,2,... where (f|-) is the natural extension of f to K(X) (the class of all compact subsets of X).展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,u...In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.展开更多
文摘We discuss the set-valued dynamics related to the theory of functional equations.We look for selections of convex set-valued functions satisfying set-valued Euler-Lagrange inclusions.We improve and extend upon some of the results in[13,20],but under weaker assumptions.Some applications of our results are also provided.
基金supported by National Science Foundation of China (Grant No.11071051)Youth Science Foundation of Heilongjiang Province of China (Grant No.QC2009C73)+1 种基金the second author is supported by the State Committee for Scientific Research of Poland (Grant No.N N201 362236)the third author is supported by National Science Foundation of China (Grant No.11071051)
文摘In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba.
基金supported by the“China Natural Science Fund under grant 11871181”the“China Natural Science Fund under grant 11561053”。
文摘In this paper,we prove that if X is an almost convex and 2-strictly convex space,linear operator T:X→Y is bounded,N(T)is an approximative compact Chebyshev subspace of X and R(T)is a 3-Chebyshev hyperplane,then there exists a homogeneous selection T^(σ)of T^(■)such that continuous points of T^(σ)and T^(■)are dense on Y.
文摘A way to extend operators in spaces of continuous functions to spaces of continuous set_valued functions is proposed. This extension is developed through the Steiner selections of the set_valued functions. Their properties and characteristics of the convergence of sequences of operators of this class are studied. In Part Ⅱ of this series some applications to approximation theory will be shown.
文摘On the basis of Part (Ⅰ) of this series some applications to the approximation of set_valued functions are obtained: Korovkin type theorems, a method to extend classical approximation operators to the set_valued setting and a Jackson type estimate.
基金Supported by Science Foundation of Education Committee of Jilin Province of China([2011]No.434)
文摘In this paper, we consider the following subadditive set-valued map F : X→P0(Y) :where r and s are two natural numbers. And we discuss the existence and unique problem of additive selection maps for the above set-valued map.
基金Foundation item: Supported by the Science Foundation of Education Committee of Jilin Province([2011] No434)
文摘In this paper, we discuss the unique existent problems of a additive selection map for the following map F:X→P0(Y):F(r∑i=1αixi)■r∑i=1αiF(xi),■xi∈K,i=1, ··· , r,where αi and αi (i = 1, ··· , r) are all non-negative real numbers.
基金Supported by the National Natural Science Foundation of China(11361064)
文摘In this paper, we will construct a new class of subadditive set-valued maps and use Cantor theorem to prove that the set-valued map has an unique additive selection map when the set-valued map satisfies some certain conditions, and then compare the obtained result with the well-known results.
基金Supported by the National Natural Science Foundation of China (10571035)
文摘By using cone-directed contingent derivatives, the unified necessary and sufficient optimality conditions are given for weakly and strongly minimal elements respectively in generalized preinvex set-valued optimization.
基金the National Natural Science Foundation(69972036) and the Natural Science Foundation of Shanxi province(995L02)
文摘The concepts of alpha-order Clarke's derivative, alpha-order Adjacent derivative and alpha-order G.Bouligand derivative of set-valued mappings are introduced, their properties are studied, with which the Fritz John optimality condition of set-valued vector optimization is established. Finally, under the assumption of pseudoconvexity, the optimality condition is proved to be sufficient.
基金Foundation item: Supported by the Science Foundation from the Ministry of Education of Jiangsu Province(04KJD110168, 06KJBll0107)
文摘In complete metric spaces, the common fixed point theorems for sequences of φ-type contraction set-valued mappings are established, and the corresponding random com- mon fixed point theorems for set-valued mappings are also obtained.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
文摘A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.
基金Project supported by the National Natural Science Foundation of China (No. 10371024) the Natural Science Foundation of Zhejiang Province (No.Y604003)
文摘The optimality Kuhn-Tucker condition and the wolfe duality for the preinvex set-valued optimization are investigated. Firstly, the concepts of alpha-order G-invex set and the alpha-order S-preinvex set-valued function were introduced, from which the properties of the corresponding contingent cone and the alpha-order contingent derivative were studied. Finally, the optimality Kuhn-Tucker condition and the Wolfe duality theorem for the alpha-order S-preinvex set-valued optimization were presented with the help of the alpha-order contingent derivative.
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
基金supported by the National Natural Science Foundation of China (11061023)
文摘In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.
文摘1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved. Nevertheless, this is not enough for the researches of biological species, demography, numerical simulation and attractors (see [1], [2]). It is necessary to know how the subsets of X moved. In this direction, we consider the set-valued discrete system associated to f, An+1 = (f|-)(An), n = 0,1,2,... where (f|-) is the natural extension of f to K(X) (the class of all compact subsets of X).
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2004110008)
文摘In this paper,the ε-super effcient solution for set-valued map vector optimization in locally convex space is introduced.And under the assumption of the nearly generalized cone-subconvexlikeness for set-valued maps,used new methods,the scalarization theorem and Lagrange multiplier theorem for ε-super effcient solution are established.