期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Selective CO Methanation over Ru Catalysts Supported on Nanostructured TiO2 with Different Crystalline Phases and Morphology 被引量:1
1
作者 王桂英 高玉仙 +1 位作者 汪文栋 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第4期475-480,I0004,共7页
Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstructures of TiO2 and supported Ru/TiO2 catal... Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstructures of TiO2 and supported Ru/TiO2 catalysts were characterized with X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and nitrogen adsorption isotherms. The phase structure, particle size, morphology, and specific surface area were determined. The supported Ru catalysts were applied for the selective methanation of CO in a hydrogen-rich stream. The results indicated that the Ru catalyst supported on rutile and TiO2-B exhibited higher catalytic performance than the counterpart supported on anatase, which suggested the distinct interaction between Ru nanoparticles and TiO2 resulting from different crystalline phases and morphology. 展开更多
关键词 selective co methanation Ru catalyst Titanium dioxide MICROSTRUCTURE
下载PDF
Performance of Ni/Nano-ZrO_2 Catalysts for CO Preferential Methanation 被引量:3
2
作者 刘其海 董新法 刘自力 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第2期131-135,共5页
Large surface areas nano-scale zirconia was prepared by the self-assembly route and was employed as support in nickel catalysts for the CO selective methanation. The effects of Ni loading and the catalyst calcination ... Large surface areas nano-scale zirconia was prepared by the self-assembly route and was employed as support in nickel catalysts for the CO selective methanation. The effects of Ni loading and the catalyst calcination temperature on the performance of the catalyst for CO selective methanation reaction were investigated. The cata- lysts were characterized by Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), X-ray dif- fraction (XRD) and temperature-programmed reduction (TPR). The results showed that the as-synthesized Ni/nano-ZrO2 catalysts presented high activity for CO methanation due to the interaction between Ni active particle and nano zir- conia support. The selectivity for the CO methanation influenced significantly by the particle size of the active Ni species. The exorbitant calcination resulted in the conglomeration of dispersive Ni particles and led to the decrease of CO methanation selectivity. Among the catalysts studied, the 7.5% (by mass) Ni/ZrO2 catalyst calcinated at 500℃ was the most effective for the CO selective methanation. It can preferentially catalyze the CO methanation with a higher 99% conversion in the CO/CO2 competitive methanation system over the temperature range of 260-280℃, while keeping the CO2 conversion relatively low. 展开更多
关键词 selective co methanation co removal nano zirconia Ni catalysts
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部