The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning...The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning which seriously limits their practical application. This review summarized sulfur poisoning mechanisms of various SCR deNG catalysts and strategies to reduce deactivation caused by SO2 such as doping metals, controlling the structures and morphologies of the catalysts, and selecting appropriate supports. The methods and procedures of catalysts preparation and the reaction conditions also have effect on SO2-resistance of the catalysts. Several novel catalyst systems that exhibited good SO2 resistance are also introduced. This paper could provide guidance for the development of highly efficient sulfur-tolerant deNOx catalysts.展开更多
A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic a...A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.展开更多
In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complemen...In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity.展开更多
The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_...The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.展开更多
Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catal...Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80℃and NOx conversion is stabilized over 90%in the wide temperature range of 100-2600 C.0.1 Nd-Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst.The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3.XPS results indicate that the optimal 0.1 Nd-Mn/Ti sample possesses higher concentration of Mn4+and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart.In situ DRIFTS show that the surface acidity is evidently increased after adding Nd,especially,the Lewis acid sites,and the intermediate(-NH2)is more stable.The reaction mechanism over Mn/Ti and 0.1 Nd-Mn/Ti catalysts obey the Eley-Rideal(E-R)mechanisms under low temperature reaction conditions.H2-TPR results show that Nd-Mn/TiO2 catalyst exhibits better lowtemperature redox properties.展开更多
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficienc...Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficiency was increased by simultaneously adding NO and O2.With NO and O2 pretreatment at 350°C,the catalyst exhibited higher catalytic activity for Hg^0 oxidation,whereas NO pretreatment did not exert a noticeable effect.Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2.Although NO promoted Hg^0 oxidation at the very beginning,excessive NO counteracted this effect.The results show that NO plays different roles in Hg^0oxidation; NO in the gaseous phase may directly react with the adsorbed Hg^0,but excessive NO hinders Hg^0 adsorption.The adsorbed NO was converted into active nitrogen species(e.g.,NO2) with oxygen,which facilitated the adsorption and oxidation of Hg^0.Hg^0 was oxidized by NO mainly by the Eley-Rideal mechanism.The Hg^0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2.展开更多
Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and ...Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.展开更多
In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al a...In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al and Si impurities were preferentially removed by selective micro wave-assisted alkali leaching.W and V were leached by enhanced high-pressure leaching with efficiencies estimated at 95% and 81%.The leaching of W and V followed the nuclear shrinkage model controlled by the combination of product layer diffusion and interfacial chemical reaction.A synergistic extraction was applied to separate W and V using an extractant mixture of di-(2-ethylhexyl)phosphoric acid P204 and the primary amine N1923.The extraction efficiencies of V and W reached 86.5% and 6.3%,respectively,with a separation coefficient(V/W) of 95.30.The product was precipitated after extraction to yield ammonium paratung state(APT) and NH_(4)VO_(3).The TiO_(2)catalyst carrier residue meets commercial specifications for reuse.This comprehensive recovery process with the characteristics of high-pressure leaching and synergistic extraction realizes the resourceful utilization of the spent catalysts.展开更多
Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste...Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts.展开更多
Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes o...Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.展开更多
A large number of spent selective catalytic reduction(SCR)denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China.According to the China’s“Directory of Nati...A large number of spent selective catalytic reduction(SCR)denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China.According to the China’s“Directory of National Hazardous Wastes(Version 2021)”,these spent vanadium-tungsten-titanium catalysts are classified as“HW50”hazardous waste,and their disposal and utilization processes have been strictly controlled.Thus,an effective and low-cost technique was developed to treat and utilize these spent SCR catalysts by the vanadium-titanium magnetite sintering process.Effects of adding spent SCR catalysts on the sintering production process and product quality indexes of sinter were studied.The results showed that adding spent SCR catalysts can improve the sintering granulation and green feed permeability,thereby increasing the productivity and flame front speed.When the addition proportion of spent SCR catalysts is less than 1 wt.%,the performance indexes of the finished sinter are basically equal to those of the finished sinter without adding spent SCR catalysts.Further increasing the proportion of spent SCR catalysts to 2.0 wt.%results in a decrease in product quality indexes,which could be attributed to the increase in perovskite content in the finished sinter.展开更多
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministrythe National Natural Science Foundation of China(21506150)
文摘The selective catalytic reduction (SCR) of NOx with NH3 has been proven to be an efficient technology for NOx conversion to N2. However, the catalysts used for SCR usually suffer from the problem of sulfur poisoning which seriously limits their practical application. This review summarized sulfur poisoning mechanisms of various SCR deNG catalysts and strategies to reduce deactivation caused by SO2 such as doping metals, controlling the structures and morphologies of the catalysts, and selecting appropriate supports. The methods and procedures of catalysts preparation and the reaction conditions also have effect on SO2-resistance of the catalysts. Several novel catalyst systems that exhibited good SO2 resistance are also introduced. This paper could provide guidance for the development of highly efficient sulfur-tolerant deNOx catalysts.
基金Project(2009T100100602) supported by the Korea Institute of Energy Technology Evaluation and Planning,Korea
文摘A solution of 0.1 mol/L to 1.0 mol/L H2SO4 can dissolve alkali metals and alkaline earth metals which weaken an active site of SCR catalyst. The waste catalyst washed with 0.5 mol/L H2SO4 regained the best catalytic activity. When a concentration of the sulfuric acid is less than 0.5 mol/L, sufficient cleaning effects cannot be obtained. In contrast, when the concentration is greater than 1.0 tool/L, the active components, vanadium and tungsten are undesirably eluted. The total BET surface of the catalyst regenerated by air lift loop reactor showed almost the same as that of fresh catalyst due to the removal of insoluble compounds which may be penetrated into pores of catalyst. The addition of a solution of 0.075 mol/L ammonium vanadate (NHnVO3) and 0.075 mol/L ammonium paratungstate (5(NH4)20· 12WO3-5H20) to 0.1 mol/L H2SO4 significantly increases the activity of the waste catalyst.
基金Sponsored by Postdoctoral Science Foundation of China(2007042031)
文摘In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity.
基金Supported by the National Natural Science Foundation of China(21006065)the Zhejiang Provincial Natural Science Foundation of China(Y5100009)
文摘The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.
基金Project supported by the Key Research and Development Projects of Jiangsu Province(BE2017716)National Key R&D Program of China(2017YFB0603201)Environmental Nonprofit Industry Research subject(2016YFC0208102)。
文摘Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80℃and NOx conversion is stabilized over 90%in the wide temperature range of 100-2600 C.0.1 Nd-Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst.The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3.XPS results indicate that the optimal 0.1 Nd-Mn/Ti sample possesses higher concentration of Mn4+and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart.In situ DRIFTS show that the surface acidity is evidently increased after adding Nd,especially,the Lewis acid sites,and the intermediate(-NH2)is more stable.The reaction mechanism over Mn/Ti and 0.1 Nd-Mn/Ti catalysts obey the Eley-Rideal(E-R)mechanisms under low temperature reaction conditions.H2-TPR results show that Nd-Mn/TiO2 catalyst exhibits better lowtemperature redox properties.
基金supported by the National Basic Research Program (973) of China (No.2013CB430005)the Special Research Funding for Public Benefit Industries from National Ministry of Environmental Protection (No.201309018)the National Hi-Tech Research and Development Program (863) of China (No.2013AA065404)
文摘Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficiency was increased by simultaneously adding NO and O2.With NO and O2 pretreatment at 350°C,the catalyst exhibited higher catalytic activity for Hg^0 oxidation,whereas NO pretreatment did not exert a noticeable effect.Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2.Although NO promoted Hg^0 oxidation at the very beginning,excessive NO counteracted this effect.The results show that NO plays different roles in Hg^0oxidation; NO in the gaseous phase may directly react with the adsorbed Hg^0,but excessive NO hinders Hg^0 adsorption.The adsorbed NO was converted into active nitrogen species(e.g.,NO2) with oxygen,which facilitated the adsorption and oxidation of Hg^0.Hg^0 was oxidized by NO mainly by the Eley-Rideal mechanism.The Hg^0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2.
基金Project(20906067)supported by the National Natural Science Foundation of ChinaProject(2011M500543)supported by the Postdoctoral Science Foundation of ChinaProject supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.
基金financially supported by Beijing Natural Science Foundation (No. 2222049)the National Natural Science Foundation of China (Nos. 52025042 and 51621003)National Key R&D Program of China (No. 2018YFC1901700)。
文摘In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al and Si impurities were preferentially removed by selective micro wave-assisted alkali leaching.W and V were leached by enhanced high-pressure leaching with efficiencies estimated at 95% and 81%.The leaching of W and V followed the nuclear shrinkage model controlled by the combination of product layer diffusion and interfacial chemical reaction.A synergistic extraction was applied to separate W and V using an extractant mixture of di-(2-ethylhexyl)phosphoric acid P204 and the primary amine N1923.The extraction efficiencies of V and W reached 86.5% and 6.3%,respectively,with a separation coefficient(V/W) of 95.30.The product was precipitated after extraction to yield ammonium paratung state(APT) and NH_(4)VO_(3).The TiO_(2)catalyst carrier residue meets commercial specifications for reuse.This comprehensive recovery process with the characteristics of high-pressure leaching and synergistic extraction realizes the resourceful utilization of the spent catalysts.
基金Project supported by the National Key Research and Development Program of China (No. 2018YFB0604104)。
文摘Selective catalytic reduction(SCR) catalyst waste is a hazardous solid waste that seriously threatens the environment and public health.In this study,a thermal melting technology is proposed for the treatment of waste SCR catalysts.The melting characteristics and mineral phase transformation of waste SCR catalysts blended with three different groups of additives were explored by heating stage microscopy,thermogravimetric analysis/differential scanning calorimetry(TG/DSC) analysis,thermodynamic simulation,and X-ray diffraction(XRD) analysis;heavy metal leaching toxicity was tested by inductively coupled plasma-atomic emission spectrometry(I CP-AES) analysis.The results indicated that the melting point of waste SCR catalysts can be effectively reduced with proper additives.The additive formula of 39.00% Fe2 O3(in weight),6.50% CaO,3.30% SiO2,and 1.20% Al2 O3 achieves the optimal fluxing behavior,significantly decreasing the initial melting temperature from 1223℃ to1169℃.Furthermore,the whole heating process of waste SCR catalysts can be divided into three stages:the solid reaction stage,the sintering stage,and the primary melting stage.The leaching concentrations of V,As,Pb,and Se are significantly reduced,from 10.64,1.054,0.195,and 0.347 mg/L to 0.178,0.025,0.048,and 0.003 mg/L,respectively,much lower than the standard limits after melting treatment,showing the strong immobilization capacity of optimal additives for heavy metals in waste SCR catalysts.The results demonstrate the feasibility of harmless melting treatments for waste SCR catalysts with relatively low energy consumption,providing theoretical support for a novel method of disposing of hazardous waste SCR catalysts.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA111708)
文摘Selective Catalyst Reduction(SCR)Urea Dosing System(UDS)directly affects the system accuracy and the dynamic response performance of a vehicle.However,the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions.That will lead to low NO_χconversion efficiency or NH_3 slip.In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions,an advanced control strategy based on an air-assisted volumetric UDS is presented.It covers the methods of flow compensation and switching working conditions.The strategy is authenticated on an UDS and tested in different dynamic conditions.The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS.The inject deviation range is improved from being between-8%and 10%to-4%and 2%and became more stable than before,and the dynamic response time was shortened from 200 ms to 150 ms.The ETC cycle result shows that after using the new strategy the NH_3 emission is reduced by 60%,and the NO_χemission remains almost unchanged.The trade-off between NO_χconversion efficiency and NH_3 slip is mitigated.The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.
基金suppored by the National Natural Science Foundation_of China(52174290 and 51704009)the University Synergy Innovation Program of Anhui Province(GXXT-2020-072).
文摘A large number of spent selective catalytic reduction(SCR)denitration catalysts are produced after the ultra-low emission transformation of coal-fired power plants in China.According to the China’s“Directory of National Hazardous Wastes(Version 2021)”,these spent vanadium-tungsten-titanium catalysts are classified as“HW50”hazardous waste,and their disposal and utilization processes have been strictly controlled.Thus,an effective and low-cost technique was developed to treat and utilize these spent SCR catalysts by the vanadium-titanium magnetite sintering process.Effects of adding spent SCR catalysts on the sintering production process and product quality indexes of sinter were studied.The results showed that adding spent SCR catalysts can improve the sintering granulation and green feed permeability,thereby increasing the productivity and flame front speed.When the addition proportion of spent SCR catalysts is less than 1 wt.%,the performance indexes of the finished sinter are basically equal to those of the finished sinter without adding spent SCR catalysts.Further increasing the proportion of spent SCR catalysts to 2.0 wt.%results in a decrease in product quality indexes,which could be attributed to the increase in perovskite content in the finished sinter.