Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and...The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.展开更多
Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introdu...Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.展开更多
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
文摘The catalytic activities of MnOx-WO3/TiO2 for selective catalytic reduction(SCR) of NO with NH3 were investigated in a wide range of temperature and reaction condition.It yielded a NOx conversion of 80.3%—99.6% and a N2 product selectivity of 100%—98.7% during 100 °C to 350 °C at gas hourly space velocity(GHSV)=18900 h-1.In the presence of 0.01% SO2 and 6% H2O at 120 °C,the NOx conversion can maintain 98.5%.At 300 °C and with 0.07% SO2 in reactant stream,the NOx conversion stabilized at 99% as high as the commercial V-W/TiO2 catalyst's level.The steady-state kinetics study shows that O2 played a promoting role.In the presence of less than 1.5% O2,NOx conversion can increase sharply with the increase of O2 concentration.The reaction order was zero with respect to NH3 and first with respect to NO with excess O2 and H2O.The kinetics active energy(Ea) of Mn-W/TiO2 was calculated to be 6.24 kJ/mol according to the kinetic experiment at various temperatures,much lower than those of other catalysts reported in the literature.Mn-W/TiO2 is an excellent catalyst for SCR of NO with NH3 by now.
基金supported by the National Natural Science Foundation of China(21473064)~~
文摘Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.